搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧在Nb(110)表面吸附的第一性原理研究

房彩红 尚家香 刘增辉

引用本文:
Citation:

氧在Nb(110)表面吸附的第一性原理研究

房彩红, 尚家香, 刘增辉

Oxygen adsorption on Nb(110) surface by first-principles calculation

Fang Cai-Hong, Shang Jia-Xiang, Liu Zeng-Hui
PDF
导出引用
  • 通过第一性原理赝势平面波方法研究了氧在Nb(110)表面的吸附性质随覆盖度变化规律. O在Nb(110)表面最稳定吸附位是洞位,次稳定吸附位是长桥位. 在长桥位吸附时, O诱导Nb(110)表面功函数随覆盖度的增加而几乎线性增加;但当O在洞位吸附时, 与干净Nb表面相比, 覆盖度为0.75 ML和1.0 ML时功函数增加, 而覆盖度为0.25 ML和0.5 ML时功函数减小.通过对面平均电荷密度分布和偶极矩变化的讨论, 解释了由吸附导致功函数复杂变化的原因.通过对表面原子结构和态密度分析, 讨论了O在Nb表面吸附时引起表面原子结构变化以及O和Nb(110)表面原子的相互作用.
    The adsorption of atomic oxygen on the Nb (110) surface is systematically investigated through the first-principles method for oxygen coverage ranging from 0.25 to 1 monolayer (ML).It is found that the hollow site is the most energetically favorable for the whole coverage range considered and that the long-bridge site takes the second place.The work function increases almost linearly with the increase of oxygen coverage for the long-bridge site adsorption, whereas for the hollow site adsorption the work function decreases when the coverage is 0.25 ML or 0.5 ML and increases when the coverage is 0.75 ML or 1 ML.Using the planar averaged charge density and the dipole moment change we can explain the complicated change of work function induced by atomic oxygen adsorption.In addition, the interaction between O and Nb is analyzed by the surface atomic structure and electronic density of states.
    • 基金项目: 国家自然科学基金 (批准号: 51071011) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51071011).
    [1]

    Halbritter J 1987 Appl. Phys. A 43 1

    [2]

    Cao W H, Yu H F, Tian Y, Yu H W, Ren Y F, Chen G H, Zhao S P 2009 Chin. Phys. B 18 5044

    [3]

    Grundner M, Halbritter J 1980 J. Appl. Phys. 51 397

    [4]

    Chen Y, Shang J X, Zhang Y 2007 Phys. Rev. B 76 184204

    [5]

    Chen Y, Shang J X, Zhang Y 2007 J. Phys. Condens. Matters. 18 016215

    [6]

    Shang J X, Guan K, Wang F H 2010 J. Phys. Condens. Matters. 22 085004

    [7]

    Liu S Y, Shang J X, Wang F H, Liu S Y, Zhang Y, Xu H B 2009 Phys. Rev. B 80 085414

    [8]

    Geng J, Tsakiropoulos P 2007 Intermetallics 15 382

    [9]

    Geng J, Tsakiropoulos P, Shao G 2006 Mater. Sci. Eng. A 441 26

    [10]

    Liu G W 2010 Acta Phys. Sin. 59 0499 (in Chinese) [刘贵文 2010 物理学报 59 0499]

    [11]

    Liu G W, Yang J 2010 Acta Phys. Sin. 59 4939 (in Chinese) [刘贵文, 杨杰 2006 物理学报 59 4939]

    [12]

    Grundner M, Halbritter J 1984 Surf. Sci. 136 144

    [13]

    Arfaoui I, Cousty J, Guillot C 2004 Surf. Sci. 557 119

    [14]

    Arfaoui I, Cousty J, Safa H 2002 Phys. Rev. B 65 115413

    [15]

    Matsui F, Fujikado M, Daimon H, Sell B, Fadley C, Kobayashi A 2006 Czech. J. Phys. 56 61

    [16]

    Razinkin A, Shalaeva E, Kuznetsov M 2008 Bull. Russ. Acad. Sci. Phys. 72 1318

    [17]

    Sürgers C, Schok M, Loneysen H 2001 Surf. Sci. 471 209

    [18]

    Arfaoui I, Guillot C, Cousty J, Antoine C 2002 J. Appl. Phys. 91 9319

    [19]

    Pantel R, Bujor M, Bardolle J 1977 Surf. Sci. 62 589

    [20]

    Chocianowski P 1990 Vacuum 41 726

    [21]

    Lindau I, Spicer W E 1974 J. Appl. Phys. 45 3720

    [22]

    Franchy R, Bartke T U, Gassmann P 1996 Surf. Sci. 366 60

    [23]

    Wen M, An B, Fukuyama S, Yokogawa K 2009 Surf. Sci. 603 216

    [24]

    Kilimis D A, Lekka Ch E 2007 Mater. Sci. Eng. B 144 5

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]

    Bengtsson L 1999 Phys. Rev. B 59 12301

    [28]

    Shein K, Shein I, Medvedeva N, Shalaeva E, Kuznetsov M, Ivanovskii A 2006 Phys. Met. Metallogr. 102 604

    [29]

    James W E, Rudolph S, Herrick L J 1951 J. Appl. Phys. 22 424

    [30]

    Leung T C, Kao C L, Su W S, Feng Y J, Chan C T 2003 Phys. Rev. B 68 195408

    [31]

    Reuter K, Scheffler M 2004 J. Phys. Chem. B 108 14477

    [32]

    Stampfl C, Scheffler M 1996 Phys. Rev. B 54 2868

    [33]

    Ganduglia-Pirovano M V, Scheffler M 1999 Phys. Rev. B 59 15533

    [34]

    Kiejna A, Lundqvist B I 2001 Phys. Rev. B 63 085405

    [35]

    Zeng Z H, Deng H Q, Li W X, 2006 Acta Phys. Sin. 55 3157 (in Chinese) [曾振华, 邓辉球, 李微雪, 胡望宇 2006 物理学报 55 3157]

    [36]

    Xu G G, Wu Q Y, Zhang J M, Chen Z G, Huang Z G 2009 Acta Phys. Sin. 58 1924 (in Chinese) [许桂贵, 吴青云, 张健敏, 陈志高, 黄志高 2009 {物理学报 58 1924]

    [37]

    Michaelides A, Hu P, Lee M H, Alavi A, King D A 2003 Phys. Rev. Lett. 90 246103

    [38]

    Hammer B, N?rskov J K, Bruce C, Gates H K 2000 Adv. Catal. 45 71

  • [1]

    Halbritter J 1987 Appl. Phys. A 43 1

    [2]

    Cao W H, Yu H F, Tian Y, Yu H W, Ren Y F, Chen G H, Zhao S P 2009 Chin. Phys. B 18 5044

    [3]

    Grundner M, Halbritter J 1980 J. Appl. Phys. 51 397

    [4]

    Chen Y, Shang J X, Zhang Y 2007 Phys. Rev. B 76 184204

    [5]

    Chen Y, Shang J X, Zhang Y 2007 J. Phys. Condens. Matters. 18 016215

    [6]

    Shang J X, Guan K, Wang F H 2010 J. Phys. Condens. Matters. 22 085004

    [7]

    Liu S Y, Shang J X, Wang F H, Liu S Y, Zhang Y, Xu H B 2009 Phys. Rev. B 80 085414

    [8]

    Geng J, Tsakiropoulos P 2007 Intermetallics 15 382

    [9]

    Geng J, Tsakiropoulos P, Shao G 2006 Mater. Sci. Eng. A 441 26

    [10]

    Liu G W 2010 Acta Phys. Sin. 59 0499 (in Chinese) [刘贵文 2010 物理学报 59 0499]

    [11]

    Liu G W, Yang J 2010 Acta Phys. Sin. 59 4939 (in Chinese) [刘贵文, 杨杰 2006 物理学报 59 4939]

    [12]

    Grundner M, Halbritter J 1984 Surf. Sci. 136 144

    [13]

    Arfaoui I, Cousty J, Guillot C 2004 Surf. Sci. 557 119

    [14]

    Arfaoui I, Cousty J, Safa H 2002 Phys. Rev. B 65 115413

    [15]

    Matsui F, Fujikado M, Daimon H, Sell B, Fadley C, Kobayashi A 2006 Czech. J. Phys. 56 61

    [16]

    Razinkin A, Shalaeva E, Kuznetsov M 2008 Bull. Russ. Acad. Sci. Phys. 72 1318

    [17]

    Sürgers C, Schok M, Loneysen H 2001 Surf. Sci. 471 209

    [18]

    Arfaoui I, Guillot C, Cousty J, Antoine C 2002 J. Appl. Phys. 91 9319

    [19]

    Pantel R, Bujor M, Bardolle J 1977 Surf. Sci. 62 589

    [20]

    Chocianowski P 1990 Vacuum 41 726

    [21]

    Lindau I, Spicer W E 1974 J. Appl. Phys. 45 3720

    [22]

    Franchy R, Bartke T U, Gassmann P 1996 Surf. Sci. 366 60

    [23]

    Wen M, An B, Fukuyama S, Yokogawa K 2009 Surf. Sci. 603 216

    [24]

    Kilimis D A, Lekka Ch E 2007 Mater. Sci. Eng. B 144 5

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]

    Bengtsson L 1999 Phys. Rev. B 59 12301

    [28]

    Shein K, Shein I, Medvedeva N, Shalaeva E, Kuznetsov M, Ivanovskii A 2006 Phys. Met. Metallogr. 102 604

    [29]

    James W E, Rudolph S, Herrick L J 1951 J. Appl. Phys. 22 424

    [30]

    Leung T C, Kao C L, Su W S, Feng Y J, Chan C T 2003 Phys. Rev. B 68 195408

    [31]

    Reuter K, Scheffler M 2004 J. Phys. Chem. B 108 14477

    [32]

    Stampfl C, Scheffler M 1996 Phys. Rev. B 54 2868

    [33]

    Ganduglia-Pirovano M V, Scheffler M 1999 Phys. Rev. B 59 15533

    [34]

    Kiejna A, Lundqvist B I 2001 Phys. Rev. B 63 085405

    [35]

    Zeng Z H, Deng H Q, Li W X, 2006 Acta Phys. Sin. 55 3157 (in Chinese) [曾振华, 邓辉球, 李微雪, 胡望宇 2006 物理学报 55 3157]

    [36]

    Xu G G, Wu Q Y, Zhang J M, Chen Z G, Huang Z G 2009 Acta Phys. Sin. 58 1924 (in Chinese) [许桂贵, 吴青云, 张健敏, 陈志高, 黄志高 2009 {物理学报 58 1924]

    [37]

    Michaelides A, Hu P, Lee M H, Alavi A, King D A 2003 Phys. Rev. Lett. 90 246103

    [38]

    Hammer B, N?rskov J K, Bruce C, Gates H K 2000 Adv. Catal. 45 71

  • [1] 刘洪亮, 郭志迎, 袁晓峰, 高倩倩, 段欣雨, 张忻, 张久兴. 典型二元单晶REB6的电子结构和发射性能. 物理学报, 2022, 71(9): 098101. doi: 10.7498/aps.71.20211870
    [2] 李俊炜, 贾维敏, 吕沙沙, 魏雅璇, 李正操, 王金涛. 氢气在γ-U (100) /Mo表面吸附行为的第一性原理研究. 物理学报, 2022, 71(22): 226601. doi: 10.7498/aps.71.20220631
    [3] 王小卡, 汤富领, 薛红涛, 司凤娟, 祁荣斐, 刘静波. H,Cl和F原子钝化Cu2ZnSnS4(112)表面态的第一性原理计算. 物理学报, 2018, 67(16): 166401. doi: 10.7498/aps.67.20180626
    [4] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [5] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究. 物理学报, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [6] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究. 物理学报, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [7] 李国旗, 张小超, 丁光月, 樊彩梅, 梁镇海, 韩培德. BiOCl{001}表面原子与电子结构的第一性原理研究. 物理学报, 2013, 62(12): 127301. doi: 10.7498/aps.62.127301
    [8] 张杨, 黄燕, 陈效双, 陆卫. InSb(110)表面S,O原子吸附的第一性原理研究. 物理学报, 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [9] 杜玉杰, 常本康, 张俊举, 李飙, 王晓晖. GaN(0001)表面电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(6): 067101. doi: 10.7498/aps.61.067101
    [10] 房丽敏. SrTiO3(001)表面上Au和N原子相互作用的第一性原理研究. 物理学报, 2011, 60(5): 056801. doi: 10.7498/aps.60.056801
    [11] 陈玉红, 杜瑞, 张致龙, 王伟超, 张材荣, 康龙, 罗永春. H2 分子在Li3N(110)表面吸附的第一性原理研究. 物理学报, 2011, 60(8): 086801. doi: 10.7498/aps.60.086801
    [12] 王芒芒, 宁华, 陶向明, 谭明秋. Au(110)表面结构和氧原子吸附的第一性原理研究. 物理学报, 2011, 60(4): 047301. doi: 10.7498/aps.60.047301
    [13] 陈玉红, 曹一杰, 任宝兴. Ti原子在Al(110)表面吸氢过程中催化作用的第一性原理研究. 物理学报, 2010, 59(11): 8015-8020. doi: 10.7498/aps.59.8015
    [14] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究. 物理学报, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [15] 杨冲, 杨春. Si(001)表面硅氧团簇原子与电子结构的第一性原理研究. 物理学报, 2009, 58(8): 5362-5369. doi: 10.7498/aps.58.5362
    [16] 赵巍, 汪家道, 刘峰斌, 陈大融. H2O分子在Fe(100), Fe(110), Fe(111)表面吸附的第一性原理研究. 物理学报, 2009, 58(5): 3352-3358. doi: 10.7498/aps.58.3352
    [17] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数. 物理学报, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [18] 宋红州, 张 平, 赵宪庚. Be(0001)薄膜中的量子尺寸效应与吸附氢的第一性原理计算. 物理学报, 2007, 56(1): 465-473. doi: 10.7498/aps.56.465
    [19] 姚红英, 顾 晓, 季 敏, 张笛儿, 龚新高. SiO2-羟基表面上金属原子的第一性原理研究. 物理学报, 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
    [20] 宋红州, 张 平, 赵宪庚. 原子氢在Be(1010)薄膜上吸附的第一性原理计算. 物理学报, 2006, 55(11): 6025-6031. doi: 10.7498/aps.55.6025
计量
  • 文章访问数:  5660
  • PDF下载量:  680
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-22
  • 修回日期:  2011-06-21
  • 刊出日期:  2012-02-05

/

返回文章
返回