搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功函数对月球表面附近尘埃充电和动力学的影响

刘志贵 宋智颖 全荣辉

引用本文:
Citation:

功函数对月球表面附近尘埃充电和动力学的影响

刘志贵, 宋智颖, 全荣辉
cstr: 32037.14.aps.73.20241281

Effect of work function on dust charging and dynamics near lunar surface

Liu Zhi-Gui, Song Zhi-Ying, Quan Rong-Hui
cstr: 32037.14.aps.73.20241281
PDF
HTML
导出引用
  • 月球表面的带电尘埃对太空任务的顺利实施构成严重威胁, 对尘埃的充电和动力学的进一步研究有助于月球探测任务的顺利实施. 本文研究了具有不同功函数的尘埃颗粒在月球表面的充电和动力学. 重新计算了与4种尘埃颗粒功函数相关的表面充电电流, 并得到了它们在不同太阳天顶角下的充电和动力学结果, 揭示了尘埃颗粒充电和动力学结果对功函数的依赖性. 结果显示具有较小功函数的尘埃颗粒能够达到较大的平衡态, 且需要更长时间才能达到这些平衡态, 其中包括尘埃颗粒能够稳定悬浮的平衡高度, 能够携带的表面电荷量以及流经尘埃颗粒表面的充电电流. 结果表明, 当太阳天顶角在0°—90°范围内变化时, 平衡态与功函数之间都呈现明显的反比关系. 尘埃颗粒在临界太阳天顶角下不能发生稳定悬浮, 且该角度的大小与功函数也呈反比关系.
    Charged dust on the lunar surface poses a threat to space missions. Research into charged dust is essential for the safety of future space missions. When calculating the charging currents related to photoelectrons, a single constant work function is assumed in the conventional lunar dust charging theory. However, the components of lunar regolith exhibit considerable diversity, including plagioclase, pyroxene, and ilmenite. Because the ability of the lunar surface or lunar dust to emit photoelectrons strongly depends on its work function, it is necessary to analyze the effect of the work function on dust charging and dynamics near the lunar surface. In this work, we use a novel method that can predict the photoelectric yield of materials with different work functions to recalculate the surface charging currents of four types of dust particles and derive their subsequent charging and dynamic results at different solar zenith angles (SZAs). As SZA varies from 0° to 90°, the work function value of dust decreases into 6 eV (Apollo lunar soil), 5.58 eV (plagioclase), 5.14 eV (pyroxene), and 4.29 eV (ilmenite), correspondingly. With each decrement in work function, the equilibrium charging current of dust particles increases about 0.25 times, the equilibrium charge number increases about 120–170 elemental charges, and the equilibrium height increases about 0.3–2 m. It is found that dust particles cannot levitate stably at a critical SZA, and the critical SZAs for the four types of dust particles are 28°, 76°, 85.8°, and 89.6°, respectively (arranged in decreasing order of work functions). These results indicate that the equilibrium heights, equilibrium currents, and critical SZAs all have an inverse relationship with the work function of dust particles as the SZA varies from 0° to 90°. Furthermore, a higher photoelectron density in areas with lower work functions leads energy losses to decrease, thus causing dust particles to take longer time to reach equilibrium. This means that the equilibrium time follows the pattern similar to that of the work function.
      通信作者: 全荣辉, quanrh@nuaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 42241148, 51877111)资助的课题.
      Corresponding author: Quan Rong-Hui, quanrh@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 42241148, 51877111).
    [1]

    Zakharov A V, Popel S I, Kuznetsov I A, Borisov N D, Rosenfeld E V, Skorov Y, Zelenyi L M 2022 Phys. Plasmas 29 110501Google Scholar

    [2]

    Xia Q, Cai M H, Xu L L, Han R L, Yang T, Han J W 2022 Chin. Phys. B 31 045201Google Scholar

    [3]

    Grard R, Tunaley J 1971 J. Geophys. Res. 76 2498Google Scholar

    [4]

    Nitter T, Havnes O 1992 Earth Moon and Planets 56 7Google Scholar

    [5]

    Nitter T, Havnes O, Melands F 1998 J. Geophys. Res.: Space Phys. 103 6605Google Scholar

    [6]

    Colwell J, Batiste S, Horányi M, Robertson S, Sture S 2007 Rev. Geophys. 45 RG2006Google Scholar

    [7]

    Lee P 1996 Icarus 124 181Google Scholar

    [8]

    Walbridge E 1973 J. Geophys. Res. 78 3668Google Scholar

    [9]

    Whipple E C 1981 Rep. Prog. Phys. 44 1197Google Scholar

    [10]

    Wang X, Horányi M, Robertson S 2009 J. Geophys. Res.:Space Phys. 114 A05103Google Scholar

    [11]

    Wang X, HoráNyi M, Robertson S 2010 J. Geophys. Res.: Space Phys. 115 A11102Google Scholar

    [12]

    Wang X, Horányi M, Robertson S 2011 Planet. Space Sci. 59 1791Google Scholar

    [13]

    Wang X, Schwan J, Hsu H W, Grün E, Horányi M 2016 Geophys. Res. Lett. 43 6103Google Scholar

    [14]

    Wang X, Pilewskie J, Hsu H W, Horányi M 2016 Geophys. Res. Lett. 43 525Google Scholar

    [15]

    Schwan J, Wang X, Hsu H W, Grün E, Horányi M 2017 Geophys. Res. Lett. 44 3059Google Scholar

    [16]

    Zimmerman M I, Farrell W M, Hartzell C M, Wang X, Horanyi M, Hurley D M, Hibbitts K 2016 J. Geophys. Res.: Planets 121 2150Google Scholar

    [17]

    Hartzell C, Zimmerman M, Hergenrother C 2022 Planet. Sci. J. 3 85Google Scholar

    [18]

    Golub’ A P, Dol’nikov G G, Zakharov A V, Zelenyi L M, Izvekova Y N, Kopnin S I, Popel S I 2012 Jetp. Lett. 95 182Google Scholar

    [19]

    Popel S I, Kopnin S I, Golub’ A P, Dol’nikov G G, Zakharov A V, Zelenyi L M, Izvekova Y N 2013 Sol. Syst. Res. 47 419Google Scholar

    [20]

    Popel S I, Golub’ A P, Zakharov A V, Zelenyi L M 2019 J. Phys. : Conf. Ser. 1147 012110Google Scholar

    [21]

    Zelenyi L M, Popel S I, Zakharov A V 2020 Plasma Phys. Rep. 46 527Google Scholar

    [22]

    Hess S L G, Sarrailh P, Mateo-Velez J C, Jeanty-Ruard B, Cipriani F, Forest J, Hilgers A, Honary F, Thiebault B, Marple S R, Rodgers D 2015 IEEE Trans. Plasma Sci. 43 2799Google Scholar

    [23]

    Kuznetsov I A, Hess S L G, Zakharov A V, Cipriani F, Seran E, Popel S I, Lisin E A, Petrov O F, Dolnikov G G, Lyash A N, Kopnin S I 2018 Planet. Space Sci. 156 62Google Scholar

    [24]

    Davari H, Farokhi B, Ali Asgarian M 2023 Sci. Rep. 13 1111Google Scholar

    [25]

    Piquette M, Horányi M 2017 Icarus 291 65Google Scholar

    [26]

    李梦谣, 夏清, 蔡明辉, 杨涛, 许亮亮, 贾鑫禹, 韩建伟 2024 物理学报 73 155201Google Scholar

    Li M Y, Xia Q, Cai M H, Yang T, Xu L L, Jia X Y, Han J W 2024 Acta Phys. Sin. 73 155201Google Scholar

    [27]

    Zhao C, Gan H, Xie L, Wang Y, Wang Y, Hong J 2023 Sci. China: Earth Sci. 66 2278Google Scholar

    [28]

    Gan H, Wei G F, Zhang W W, Li X Y, Jiang S Y, Wang C, Ma J N, Zhang X P 2023 Sci. China: Phys. Mech. Astron. 53 127Google Scholar

    [29]

    Li L, Zhang Y T, Zhou B, Feng Y Y 2016 Sci. China: Earth Sci. 59 2053Google Scholar

    [30]

    Popel S I, Golub’ A P, Izvekova Y N, Afonin V V, Dol’nikov G G, Zakharov A V, Zelenyi L M, Lisin E A, Petrov O F 2014 Jetp. Lett. 99 115Google Scholar

    [31]

    Mishra S K 2020 Phys. Plasmas 27 082906Google Scholar

    [32]

    Feuerbacher B, Anderegg M, Fitton B, Laude L D, Willis R F, Grard R J L 1972 Lunar and Planetary Science Conference Proceedings 3 2655

    [33]

    Sternovsky Z, Robertson S, Sickafoose A, Colwell J, Horányi M 2002 J. Geophys. Res.: Planets 107 5105Google Scholar

    [34]

    Sternovsky Z, Chamberlin P, Horanyi M, Robertson S, Wang X 2008 J. Geophys. Res.: Space Phys. 113 A10104Google Scholar

    [35]

    Kimura H 2016 Mon. Not. R. Astron. Soc. 459 2751Google Scholar

    [36]

    Seah M P, Dench W 1979 Surf. Interface Anal. 1 2Google Scholar

    [37]

    Senshu H, Kimura H, Yamamoto T, Wada K, Kobayashi M, Namiki N, Matsui T 2015 Planet. Space Sci. 116 18Google Scholar

    [38]

    Chamberlin P C, Woods T N, Eparvier F G 2007 Space Weather 5 S07005Google Scholar

    [39]

    Rakesh Chandran S B, Veenas C L, Asitha L R, Parvathy B, Rakhimol K R, Abraham A, Rajesh S R, Sunitha A P, Renuka G 2022 Adv. Space Res. 70 546Google Scholar

    [40]

    Stubbs T J, Farrell W M, Halekas J S, Burchill J K, Collier M R, Zimmerman M I, Vondrak R R, Delory G T, Pfaff R F 2014 Planet. Space Sci. 90 10Google Scholar

    [41]

    Colwell J E, Gulbis A A, Horányi M, Robertson S 2005 Icarus 175 159Google Scholar

    [42]

    Gan H, Li X, Wei G, Wang S 2015 Adv. Space Res. 56 2432Google Scholar

    [43]

    Willis R F, Anderegg M, Feuerbacher B, Fitton B (Grard R J L Ed.) 1973 Astrophys. Space Sci. Libr. 37 389

    [44]

    Zhao J, Wei X, Du X, He X, Han D 2021 IEEE Trans. Plasma Sci. 49 3036Google Scholar

    [45]

    Nitter T, Aslaksen T K, Melandso F, Havnes O 1994 IEEE Trans. Plasma Sci. 22 159Google Scholar

    [46]

    Qian X Y, Zhang Y Y, Fang Z, Yang J F, Fang Y W, Li S Q 2024 J. Astronaut. 45 613Google Scholar

    [47]

    Poppe A, Horányi M 2010 J. Geophys. Res.: Space Phys. 115 A08106Google Scholar

    [48]

    Hartzell C M 2019 Icarus 333 234Google Scholar

    [49]

    Popel S I, Golub’ A P, Kassem A I, Zelenyi L M 2022 Phys. Plasmas 29 013701Google Scholar

  • 图 1  阿波罗任务带回的样品的光电子产率

    Fig. 1.  Photoelectric yield measured on samples returned by Apollo missions.

    图 2  最小太阳活动周期下的太阳辐射光谱

    Fig. 2.  Wavelength dependence of solar radiation spectrum under minimum solar activity conditions.

    图 3  4种不同功函数尘埃的光电子产率. 实线表示使用Kimura方法计算的产率, 红色实线代表阿波罗月球土壤, 蓝色实线代表斜长石, 黄色实线代表辉石, 绿色实线代表钛铁矿. 红色虚线表示阿波罗月球土壤的实验产率

    Fig. 3.  Photoelectric yield for four different types of dust particles. Solid lines represent yield calculated by using Kimura’s method. Red line represents Apollo lunar soil, blue line represents plagioclase, yellow line represents pyroxene, and green line represents ilmenite. Red dash line represents experimental yield of Apollo lunar soil.

    图 4  4个区域内正午时分的电势、电场与高度的函数关系, 为方便比较, 绘制了半对数横坐标形式的内插图 (a) 电势与高度的函数关系; (b) 电场与高度的函数关系

    Fig. 4.  Height dependence of surface potential and electric field at noon. For clarity, the semilogx form has been plotted: (a) Potential; (b) electric field.

    图 5  正午时分悬浮尘埃颗粒的充电电流 (a) 光电子发射电流; (b) 光电子收集电流; (c) 太阳风电子电流

    Fig. 5.  Charging currents of suspended dust particles at noon: (a) Photoemission current; (b) photoelectron collection current; (c) solar wind electron current.

    图 6  正午时分4种尘埃颗粒的电流能, 0—60 s内的结果已被绘制为内插图

    Fig. 6.  Energy created by charging currents at noon. Current energy from 0–60 s has been magnified.

    图 7  正午时分悬浮尘埃颗粒的表面电荷数

    Fig. 7.  Charge numbers of suspended dust particles at noon.

    图 8  正午时分悬浮尘埃颗粒的高度, 内插图为900—1000 s的结果

    Fig. 8.  Vertical height of suspended dust particles at noon, results at 900–1000 s have been magnified.

    图 9  悬浮尘埃颗粒的平衡态 (a) 平衡高度; (b) 平衡电荷数

    Fig. 9.  Equilibria of suspended dust particles: (a) equilibrium height; (b) equilibrium charge numbers.

    表 1  4个区域中的材料参数及正午时分的光电子浓度

    Table 1.  Material parameters and photoelectron density of four areas at noon.

    尘埃类型 密度/(g·cm–3) 功函数/eV 浓度/(107 m–3)
    阿波罗月壤 1.5 6.00 6.6943
    斜长石 2.7 5.58 6.9190
    辉石 3.2 5.14 7.1508
    钛铁矿 4.4 4.29 7.5901
    下载: 导出CSV

    表 2  初始参数

    Table 2.  Initial parameters.

    参数 参数值
    日心距$ {d} $/AU 1
    重力加速度$ g_{\mathrm{a}}/({\mathrm{m}} \cdot {\mathrm{s}}^{-2}) $ 1.63
    尘埃质量$ m_{\mathrm{d}}/{\mathrm{kg}} $ 6.28318$ \times 10^{-18} $
    初始电荷$ Q_0 /{\mathrm{C}}$ 3.20424$ \times 10^{-17} $
    初始速度$ v_{\mathrm{d0}}/({\mathrm{m}} \cdot {\mathrm{s}}^{-1}) $ 2
    下载: 导出CSV
  • [1]

    Zakharov A V, Popel S I, Kuznetsov I A, Borisov N D, Rosenfeld E V, Skorov Y, Zelenyi L M 2022 Phys. Plasmas 29 110501Google Scholar

    [2]

    Xia Q, Cai M H, Xu L L, Han R L, Yang T, Han J W 2022 Chin. Phys. B 31 045201Google Scholar

    [3]

    Grard R, Tunaley J 1971 J. Geophys. Res. 76 2498Google Scholar

    [4]

    Nitter T, Havnes O 1992 Earth Moon and Planets 56 7Google Scholar

    [5]

    Nitter T, Havnes O, Melands F 1998 J. Geophys. Res.: Space Phys. 103 6605Google Scholar

    [6]

    Colwell J, Batiste S, Horányi M, Robertson S, Sture S 2007 Rev. Geophys. 45 RG2006Google Scholar

    [7]

    Lee P 1996 Icarus 124 181Google Scholar

    [8]

    Walbridge E 1973 J. Geophys. Res. 78 3668Google Scholar

    [9]

    Whipple E C 1981 Rep. Prog. Phys. 44 1197Google Scholar

    [10]

    Wang X, Horányi M, Robertson S 2009 J. Geophys. Res.:Space Phys. 114 A05103Google Scholar

    [11]

    Wang X, HoráNyi M, Robertson S 2010 J. Geophys. Res.: Space Phys. 115 A11102Google Scholar

    [12]

    Wang X, Horányi M, Robertson S 2011 Planet. Space Sci. 59 1791Google Scholar

    [13]

    Wang X, Schwan J, Hsu H W, Grün E, Horányi M 2016 Geophys. Res. Lett. 43 6103Google Scholar

    [14]

    Wang X, Pilewskie J, Hsu H W, Horányi M 2016 Geophys. Res. Lett. 43 525Google Scholar

    [15]

    Schwan J, Wang X, Hsu H W, Grün E, Horányi M 2017 Geophys. Res. Lett. 44 3059Google Scholar

    [16]

    Zimmerman M I, Farrell W M, Hartzell C M, Wang X, Horanyi M, Hurley D M, Hibbitts K 2016 J. Geophys. Res.: Planets 121 2150Google Scholar

    [17]

    Hartzell C, Zimmerman M, Hergenrother C 2022 Planet. Sci. J. 3 85Google Scholar

    [18]

    Golub’ A P, Dol’nikov G G, Zakharov A V, Zelenyi L M, Izvekova Y N, Kopnin S I, Popel S I 2012 Jetp. Lett. 95 182Google Scholar

    [19]

    Popel S I, Kopnin S I, Golub’ A P, Dol’nikov G G, Zakharov A V, Zelenyi L M, Izvekova Y N 2013 Sol. Syst. Res. 47 419Google Scholar

    [20]

    Popel S I, Golub’ A P, Zakharov A V, Zelenyi L M 2019 J. Phys. : Conf. Ser. 1147 012110Google Scholar

    [21]

    Zelenyi L M, Popel S I, Zakharov A V 2020 Plasma Phys. Rep. 46 527Google Scholar

    [22]

    Hess S L G, Sarrailh P, Mateo-Velez J C, Jeanty-Ruard B, Cipriani F, Forest J, Hilgers A, Honary F, Thiebault B, Marple S R, Rodgers D 2015 IEEE Trans. Plasma Sci. 43 2799Google Scholar

    [23]

    Kuznetsov I A, Hess S L G, Zakharov A V, Cipriani F, Seran E, Popel S I, Lisin E A, Petrov O F, Dolnikov G G, Lyash A N, Kopnin S I 2018 Planet. Space Sci. 156 62Google Scholar

    [24]

    Davari H, Farokhi B, Ali Asgarian M 2023 Sci. Rep. 13 1111Google Scholar

    [25]

    Piquette M, Horányi M 2017 Icarus 291 65Google Scholar

    [26]

    李梦谣, 夏清, 蔡明辉, 杨涛, 许亮亮, 贾鑫禹, 韩建伟 2024 物理学报 73 155201Google Scholar

    Li M Y, Xia Q, Cai M H, Yang T, Xu L L, Jia X Y, Han J W 2024 Acta Phys. Sin. 73 155201Google Scholar

    [27]

    Zhao C, Gan H, Xie L, Wang Y, Wang Y, Hong J 2023 Sci. China: Earth Sci. 66 2278Google Scholar

    [28]

    Gan H, Wei G F, Zhang W W, Li X Y, Jiang S Y, Wang C, Ma J N, Zhang X P 2023 Sci. China: Phys. Mech. Astron. 53 127Google Scholar

    [29]

    Li L, Zhang Y T, Zhou B, Feng Y Y 2016 Sci. China: Earth Sci. 59 2053Google Scholar

    [30]

    Popel S I, Golub’ A P, Izvekova Y N, Afonin V V, Dol’nikov G G, Zakharov A V, Zelenyi L M, Lisin E A, Petrov O F 2014 Jetp. Lett. 99 115Google Scholar

    [31]

    Mishra S K 2020 Phys. Plasmas 27 082906Google Scholar

    [32]

    Feuerbacher B, Anderegg M, Fitton B, Laude L D, Willis R F, Grard R J L 1972 Lunar and Planetary Science Conference Proceedings 3 2655

    [33]

    Sternovsky Z, Robertson S, Sickafoose A, Colwell J, Horányi M 2002 J. Geophys. Res.: Planets 107 5105Google Scholar

    [34]

    Sternovsky Z, Chamberlin P, Horanyi M, Robertson S, Wang X 2008 J. Geophys. Res.: Space Phys. 113 A10104Google Scholar

    [35]

    Kimura H 2016 Mon. Not. R. Astron. Soc. 459 2751Google Scholar

    [36]

    Seah M P, Dench W 1979 Surf. Interface Anal. 1 2Google Scholar

    [37]

    Senshu H, Kimura H, Yamamoto T, Wada K, Kobayashi M, Namiki N, Matsui T 2015 Planet. Space Sci. 116 18Google Scholar

    [38]

    Chamberlin P C, Woods T N, Eparvier F G 2007 Space Weather 5 S07005Google Scholar

    [39]

    Rakesh Chandran S B, Veenas C L, Asitha L R, Parvathy B, Rakhimol K R, Abraham A, Rajesh S R, Sunitha A P, Renuka G 2022 Adv. Space Res. 70 546Google Scholar

    [40]

    Stubbs T J, Farrell W M, Halekas J S, Burchill J K, Collier M R, Zimmerman M I, Vondrak R R, Delory G T, Pfaff R F 2014 Planet. Space Sci. 90 10Google Scholar

    [41]

    Colwell J E, Gulbis A A, Horányi M, Robertson S 2005 Icarus 175 159Google Scholar

    [42]

    Gan H, Li X, Wei G, Wang S 2015 Adv. Space Res. 56 2432Google Scholar

    [43]

    Willis R F, Anderegg M, Feuerbacher B, Fitton B (Grard R J L Ed.) 1973 Astrophys. Space Sci. Libr. 37 389

    [44]

    Zhao J, Wei X, Du X, He X, Han D 2021 IEEE Trans. Plasma Sci. 49 3036Google Scholar

    [45]

    Nitter T, Aslaksen T K, Melandso F, Havnes O 1994 IEEE Trans. Plasma Sci. 22 159Google Scholar

    [46]

    Qian X Y, Zhang Y Y, Fang Z, Yang J F, Fang Y W, Li S Q 2024 J. Astronaut. 45 613Google Scholar

    [47]

    Poppe A, Horányi M 2010 J. Geophys. Res.: Space Phys. 115 A08106Google Scholar

    [48]

    Hartzell C M 2019 Icarus 333 234Google Scholar

    [49]

    Popel S I, Golub’ A P, Kassem A I, Zelenyi L M 2022 Phys. Plasmas 29 013701Google Scholar

  • [1] 李梦谣, 夏清, 蔡明辉, 杨涛, 许亮亮, 贾鑫禹, 韩建伟. 月球南极尘埃等离子体环境特性. 物理学报, 2024, 73(15): 155201. doi: 10.7498/aps.73.20240599
    [2] 王麒铭, 张益军, 王兴超, 王亮, 金睦淳, 任玲, 刘晓荣, 钱芸生. Cs/O沉积Na2KSb光电阴极表面的第一性原理研究. 物理学报, 2024, 73(8): 088501. doi: 10.7498/aps.73.20231561
    [3] 赵睿, 沈来权, 常超, 白海洋, 汪卫华. 月球玻璃. 物理学报, 2023, 72(23): 236101. doi: 10.7498/aps.72.20231238
    [4] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2022, 71(4): 046102. doi: 10.7498/aps.71.20211748
    [5] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. 电场对GaN/g-C3N4异质结电子结构和光学性质影响的第一性原理研究. 物理学报, 2022, 71(9): 097301. doi: 10.7498/aps.71.20212261
    [6] 刘洪亮, 郭志迎, 袁晓峰, 高倩倩, 段欣雨, 张忻, 张久兴. 典型二元单晶REB6的电子结构和发射性能. 物理学报, 2022, 71(9): 098101. doi: 10.7498/aps.71.20211870
    [7] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211748
    [8] 廖天军, 杨智敏, 林比宏. 基于电荷和热输运的石墨烯热电子器件性能优化. 物理学报, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [9] 廖天军, 林比宏, 王宇珲. 新型高效热离子功率器件的性能特性研究. 物理学报, 2019, 68(18): 187901. doi: 10.7498/aps.68.20190882
    [10] 陈鑫, 颜晓红, 肖杨. Li掺杂少层MoS2的电荷分布及与石墨和氮化硼片的比较. 物理学报, 2015, 64(8): 087102. doi: 10.7498/aps.64.087102
    [11] 杜玉杰, 常本康, 张俊举, 李飙, 王晓晖. GaN(0001)表面电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(6): 067101. doi: 10.7498/aps.61.067101
    [12] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究. 物理学报, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [13] 周华杰, 徐秋霞. Ni全硅化金属栅功函数调节技术研究. 物理学报, 2011, 60(10): 108102. doi: 10.7498/aps.60.108102
    [14] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数. 物理学报, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [15] 宋红州, 张 平, 赵宪庚. Be(0001)薄膜中的量子尺寸效应与吸附氢的第一性原理计算. 物理学报, 2007, 56(1): 465-473. doi: 10.7498/aps.56.465
    [16] 王国栋, 张 旺, 张文华, 李宗木, 徐法强. Fe/ZnO(0001)界面的同步辐射光电子能谱研究. 物理学报, 2007, 56(6): 3468-3472. doi: 10.7498/aps.56.3468
    [17] 宋红州, 张 平, 赵宪庚. 原子氢在Be(1010)薄膜上吸附的第一性原理计算. 物理学报, 2006, 55(11): 6025-6031. doi: 10.7498/aps.55.6025
    [18] 李萍剑, 张文静, 张琦锋, 吴锦雷. 接触电极的功函数对基于碳纳米管构建的场效应管的影响. 物理学报, 2006, 55(10): 5460-5465. doi: 10.7498/aps.55.5460
    [19] 陆赟豪, 段效邦, 吕 萍, 张寒洁, 李海洋, 鲍世宁, 何丕模. 三萘基膦在Ag(110)面上沉积的紫外光电子能谱研究. 物理学报, 2005, 54(9): 4319-4323. doi: 10.7498/aps.54.4319
    [20] 王浭, 李海洋, 徐亚伯. K/Cu(111)表面功函数的变化. 物理学报, 1990, 39(12): 1989-1993. doi: 10.7498/aps.39.1989
计量
  • 文章访问数:  869
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-11
  • 修回日期:  2024-10-16
  • 上网日期:  2024-10-29
  • 刊出日期:  2024-12-05

/

返回文章
返回