搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

月球南极尘埃等离子体环境特性

李梦谣 夏清 蔡明辉 杨涛 许亮亮 贾鑫禹 韩建伟

引用本文:
Citation:

月球南极尘埃等离子体环境特性

李梦谣, 夏清, 蔡明辉, 杨涛, 许亮亮, 贾鑫禹, 韩建伟

Characteristics of dust plasma environment at lunar south pole

Li Meng-Yao, Xia Qing, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Jia Xin-Yu, Han Jian-Wei
PDF
HTML
导出引用
  • 由于缺少大气和全球性磁场的保护, 空间等离子体环境可直接作用于月球表面的月壤层, 月壤中较小粒径的月尘带电后会在月面附近形成复杂的尘埃等离子体环境, 影响探月任务的顺利实施. 针对月球南极尘埃等离子体环境, 本文利用SPIS (spacecraft plasma interactions software)软件, 仿真研究了月球南极0—200 m高度范围的等离子体和月尘的空间分布情况及月面充电特性, 揭示了月面附近尘埃等离子体环境特征及悬浮在月面附近的带电月尘对等离子体环境的影响. 仿真结果与Apollo探测数据和Popel团队的理论数据吻合. 研究结果: 表明空间电位随着高度升高而增加, 月球南极附近0—10 m电位约为–40 V, 在100 m处空间电位约为–20 V; 在10 m以下高度范围内月尘密度为107.22—104.66 m–3; 月表附近尘埃等离子体中的电子密度为105.47 m–3, 离子密度为106.07 m –3, 并随着高度升高而增大; 带电月尘会影响月尘的空间分布, 主要是通过影响空间电场的分布, 进而导致电子分布差异, 对离子的影响不大.
    Unlike the Earth, the Moon lacks is not protected from the atmosphere and global magnetic field, and will be directly exposed to complex radiation environments such as high-energy cosmic rays, solar wind, and the Earth’s magnetotail plasma. The surface of the Moon is covered with a thick layer of lunar soil, and the particles in the soil with a diameter between 30 nm–20 μm are called lunar dust. In the complex environments such as solar wind or magnetotail plasma, lunar dust carries an electric charge and becomes charged lunar dust. Charged lunar dust is prone to migration under the action of the electric field on the lunar surface. Charged migrated lunar dust is easy to adhere to the surface of instruments and equipment, resulting in visual impairment, astronauts’ movement disorders, equipment mechanical blockage, sealing failure, and material wear, which affects the lunar exploration mission. As an important lunar exploration landing site, the lunar south pole receives special solar radiation and produces a special dust plasma environment due to its special location. In order to provide an environmental reference for lunar south pole exploration, it is necessary to explore the characteristics of the dust plasma environment in the lunar south pole and its impact. In view of the lunar south pole environment, The Spacecraft Plasma Interactions Software (SPIS) software developed by the European Space Agency is used to carry out modelling and simulation in this work. Through the simulation, the logarithmic distribution of the lunar dust space density in a range of 0–200 m at the lunar south pole, the potential distribution near the lunar surface, and the spatial distribution characteristics of plasma electrons and ions are obtained. The obtained lunar dust space density and lunar surface potential are similar to the previous theoretical derivation and field detection data, so the simulation results have high reliability. The spatial potential distribution and the spatial density distribution of electrons and ions in the lunar environment with and without lunar dust are compared. Finally, the conclusions can be drawn as follows. The space potential increases with altitude increasing. The potential at 0–10 m near the lunar south pole is about –40 V, and the space potential at 100 m is about –20 V. The density of lunar dust in an altitude range below 10 m is 107.22 m–3–104.66 m–3. The electron density in the dust plasma near the lunar surface is 105.47 m–3, and the ion density is 106.07 m–3, and both increase with altitude increasing. Charged lunar dust affects the spatial distribution of lunar dust, mainly through affecting the distribution of the space electric field, which leads to difference in electron distribution, but has little effect on ions.
      通信作者: 蔡明辉, caiminghui@nssc.ac.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 42204175)资助的课题.
      Corresponding author: Cai Ming-Hui, caiminghui@nssc.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 42204175).
    [1]

    Zhang S S, Wang S J, Li X Y, Li S J, Tang H, Li Y, Yu W 2013 J. Earth. Sci. 38 339Google Scholar

    [2]

    Gaier J R 2007 The Effects of Lunar Dust on EVA Systems During the Apollo Missions NASA Technical Report TM-2005-213610

    [3]

    Park J, Liu Y, Kihm K D, Hill E, Taylor L A 2006 Earth & Space 2006: Engineering, Construction, and Operations in Challenging Environment (Houston: American Society of Civil Engineers) p1

    [4]

    Horányi M, Szalay J R, Wang X 2024 Phil. Trans. R. Soc. A. 382 20230075Google Scholar

    [5]

    Sickafoose A A, Colwell J E, Horányi M, Robertson S 2001 Geophys. Res. Space Phys. 106 8343Google Scholar

    [6]

    Sickafoose A A, Colwell J E, Horányi M, Robertson S 2002 Geophys. Res. Space Phys. 107 SMP 37-1Google Scholar

    [7]

    Sternovsky Z, Robertson S, Sickafoose A, Colwell J, Horányi M 2002 J. Geophys. Res. Planets. 107 15Google Scholar

    [8]

    Colwell J E, Robertson S R, Horányi M, Wang X, Poppe A, Wheeler P 2009 J. Aerosp. Eng. 22 2Google Scholar

    [9]

    Colwell J E, Batiste S, Horányi M, Robertson S, Sture S 2007 Rev. Geophys. 45 RG2006Google Scholar

    [10]

    Wang X, Schwan J, Hsu H W, Grün E, Horányi M 2016 Geophys. Res. Lett. 43 6103Google Scholar

    [11]

    Popel S I, Zelenyi L M 2013 J. Plasma Phys. 79 405Google Scholar

    [12]

    Popel S I, Golub’ A P, Izvekova Y N, Afonin V V, Dol’nikov G G, Zakharov A V, Petrov O F 2014 JETP Lett. 99 115Google Scholar

    [13]

    Popel S I, Golub’ A P, Zelenyi L M 2014 Eur. Phys. J. D. 68 245Google Scholar

    [14]

    Popel S I, Golub’ A P, Lisin E A, Izvekova Y N, Atamaniuk B, Dol’nikov G G, Zelenyi L M 2016 JETP Lett. 103 563Google Scholar

    [15]

    Popel S I, Golub’ A P, Zelenyi L M, Horányi M 2017 JETP Lett. 105 635Google Scholar

    [16]

    Popel S I, Zelenyi L M, Dubinskii A Y 2018 Planet. Space Sci. 156 71Google Scholar

    [17]

    Popel S I, Zelenyi L M 2014 J. Plasma. Phys. 80 885Google Scholar

    [18]

    Anuar A K 2013 Ph. D. Dissertation (United Kingdom: Lancaster University

    [19]

    Sternovsky Z, Chamberlin P, Horanyi M, Robertson S, Wang X 2008 J. Geophys. Res. Space Phys. 113 A10104Google Scholar

    [20]

    Robertson S H, Sternovsky Z, Horanyi M 2010 IEEE. Trans. Plasma. Sci. 38 766Google Scholar

    [21]

    Hartzell C M, Bellan P, Bodewits D, Delzanno G L, Hirabayashi M, Hyde T, Israelsson U 2023 Acta. Astronaut. 207 89Google Scholar

    [22]

    Xie L H, Zhang X, Li L, Zhou B, Zhang Y, Yan Q, Yu S, Feng Y, Guo D, Yu S 2020 Geophys. Res. Lett. 47 e2020GL089593Google Scholar

    [23]

    Zhao C X, Gan H, Xie L H, Wang Y, Wang Y J, Hong J Y 2023 Sci. China Earth Sci. 66 2278Google Scholar

    [24]

    Hess S L G, Sarrailh P, Matéo-Vélez J C, Jeanty-Ruard B, Cipriani F, Forest J, Rodgers D 2015 IEEE. Trans. Plasma. Sci. 43 2799-2807Google Scholar

    [25]

    Dyadechkin S, Kallio E, Wurz P 2015 J. Geophys. Res. Space Physics. 120 1589Google Scholar

    [26]

    SPIS-DUST Detailed Design Document and Software User Manual_v2, Sarrailh P, Hess S, Mateo Velez J C, Jeanty Ruard B, Forest J https://www.spis.org/software/spis/documentation/ [2024-4-30]

    [27]

    Halekas J S, Delory G T, Lin R P, Stubbs T J, Farrell W M 2008 J. Geophys. Res. Space Phys. 113 A09102Google Scholar

    [28]

    Williams J P, Paige D A, Greenhagen B T, Sefton-Nash E 2017 Icarus. 283 300Google Scholar

    [29]

    De Rosa D, Bussey B, Cahill J T, Lutz T, Crawford I A, Hackwill T, Carpenter J D 2012 Planet. Space Sci. 74 224Google Scholar

    [30]

    Freeman J W, Ibrahim M 1975 Lunar Science Institute, Conference on Interactions of the Interplanetary Plasma with the Modern and Ancient Moon Lake Geneva, Wis, September 30–October 4, 1974 p103

  • 图 1  仿真区域网格划分图

    Fig. 1.  Mesh division diagram of the simulation area.

    图 2  仿真过程中电流的变化

    Fig. 2.  Changes in current during simulation.

    图 3  月尘颗粒带电量对数分布(月球南极环境, 单位: C)

    Fig. 3.  Logarithmic distribution of charge amount of lunar dust particles (lunar south pole environment, unit: C).

    图 4  月尘空间密度对数分布(月球南极环境, 单位: m–3)

    Fig. 4.  Logarithmic distribution of lunar dust spatial density (lunar south pole environment, unit: m–3).

    图 5  等离子体空间密度对数分布(月球南极环境, 单位: m–3) (a) 电子; (b) 离子

    Fig. 5.  Logarithmic distribution of plasma spatial density (lunar south pole environment, unit: m–3): (a) Electrons; (b) ions.

    图 6  月面附近电位分布(月球南极环境, 单位: V)

    Fig. 6.  Potential distribution near the lunar surface (lunar south pole environment, unit: V).

    图 7  月尘空间密度分布

    Fig. 7.  Distribution of lunar dust spatial density.

    图 8  月尘空间电位分布

    Fig. 8.  Distribution of lunar dust space potential.

    图 9  电子空间密度分布

    Fig. 9.  Distribution of electron spatial density.

    图 10  离子空间密度分布

    Fig. 10.  Distribution of ion spatial density.

  • [1]

    Zhang S S, Wang S J, Li X Y, Li S J, Tang H, Li Y, Yu W 2013 J. Earth. Sci. 38 339Google Scholar

    [2]

    Gaier J R 2007 The Effects of Lunar Dust on EVA Systems During the Apollo Missions NASA Technical Report TM-2005-213610

    [3]

    Park J, Liu Y, Kihm K D, Hill E, Taylor L A 2006 Earth & Space 2006: Engineering, Construction, and Operations in Challenging Environment (Houston: American Society of Civil Engineers) p1

    [4]

    Horányi M, Szalay J R, Wang X 2024 Phil. Trans. R. Soc. A. 382 20230075Google Scholar

    [5]

    Sickafoose A A, Colwell J E, Horányi M, Robertson S 2001 Geophys. Res. Space Phys. 106 8343Google Scholar

    [6]

    Sickafoose A A, Colwell J E, Horányi M, Robertson S 2002 Geophys. Res. Space Phys. 107 SMP 37-1Google Scholar

    [7]

    Sternovsky Z, Robertson S, Sickafoose A, Colwell J, Horányi M 2002 J. Geophys. Res. Planets. 107 15Google Scholar

    [8]

    Colwell J E, Robertson S R, Horányi M, Wang X, Poppe A, Wheeler P 2009 J. Aerosp. Eng. 22 2Google Scholar

    [9]

    Colwell J E, Batiste S, Horányi M, Robertson S, Sture S 2007 Rev. Geophys. 45 RG2006Google Scholar

    [10]

    Wang X, Schwan J, Hsu H W, Grün E, Horányi M 2016 Geophys. Res. Lett. 43 6103Google Scholar

    [11]

    Popel S I, Zelenyi L M 2013 J. Plasma Phys. 79 405Google Scholar

    [12]

    Popel S I, Golub’ A P, Izvekova Y N, Afonin V V, Dol’nikov G G, Zakharov A V, Petrov O F 2014 JETP Lett. 99 115Google Scholar

    [13]

    Popel S I, Golub’ A P, Zelenyi L M 2014 Eur. Phys. J. D. 68 245Google Scholar

    [14]

    Popel S I, Golub’ A P, Lisin E A, Izvekova Y N, Atamaniuk B, Dol’nikov G G, Zelenyi L M 2016 JETP Lett. 103 563Google Scholar

    [15]

    Popel S I, Golub’ A P, Zelenyi L M, Horányi M 2017 JETP Lett. 105 635Google Scholar

    [16]

    Popel S I, Zelenyi L M, Dubinskii A Y 2018 Planet. Space Sci. 156 71Google Scholar

    [17]

    Popel S I, Zelenyi L M 2014 J. Plasma. Phys. 80 885Google Scholar

    [18]

    Anuar A K 2013 Ph. D. Dissertation (United Kingdom: Lancaster University

    [19]

    Sternovsky Z, Chamberlin P, Horanyi M, Robertson S, Wang X 2008 J. Geophys. Res. Space Phys. 113 A10104Google Scholar

    [20]

    Robertson S H, Sternovsky Z, Horanyi M 2010 IEEE. Trans. Plasma. Sci. 38 766Google Scholar

    [21]

    Hartzell C M, Bellan P, Bodewits D, Delzanno G L, Hirabayashi M, Hyde T, Israelsson U 2023 Acta. Astronaut. 207 89Google Scholar

    [22]

    Xie L H, Zhang X, Li L, Zhou B, Zhang Y, Yan Q, Yu S, Feng Y, Guo D, Yu S 2020 Geophys. Res. Lett. 47 e2020GL089593Google Scholar

    [23]

    Zhao C X, Gan H, Xie L H, Wang Y, Wang Y J, Hong J Y 2023 Sci. China Earth Sci. 66 2278Google Scholar

    [24]

    Hess S L G, Sarrailh P, Matéo-Vélez J C, Jeanty-Ruard B, Cipriani F, Forest J, Rodgers D 2015 IEEE. Trans. Plasma. Sci. 43 2799-2807Google Scholar

    [25]

    Dyadechkin S, Kallio E, Wurz P 2015 J. Geophys. Res. Space Physics. 120 1589Google Scholar

    [26]

    SPIS-DUST Detailed Design Document and Software User Manual_v2, Sarrailh P, Hess S, Mateo Velez J C, Jeanty Ruard B, Forest J https://www.spis.org/software/spis/documentation/ [2024-4-30]

    [27]

    Halekas J S, Delory G T, Lin R P, Stubbs T J, Farrell W M 2008 J. Geophys. Res. Space Phys. 113 A09102Google Scholar

    [28]

    Williams J P, Paige D A, Greenhagen B T, Sefton-Nash E 2017 Icarus. 283 300Google Scholar

    [29]

    De Rosa D, Bussey B, Cahill J T, Lutz T, Crawford I A, Hackwill T, Carpenter J D 2012 Planet. Space Sci. 74 224Google Scholar

    [30]

    Freeman J W, Ibrahim M 1975 Lunar Science Institute, Conference on Interactions of the Interplanetary Plasma with the Modern and Ancient Moon Lake Geneva, Wis, September 30–October 4, 1974 p103

  • [1] 刘志贵, 宋智颖, 全荣辉. 功函数对月球表面附近尘埃充电和动力学的影响. 物理学报, 2024, 73(23): 239501. doi: 10.7498/aps.73.20241281
    [2] 张东荷雨, 刘金宝, 付洋洋. 激光维持等离子体多物理场耦合模型与仿真. 物理学报, 2024, 73(2): 025201. doi: 10.7498/aps.73.20231056
    [3] 赵睿, 沈来权, 常超, 白海洋, 汪卫华. 月球玻璃. 物理学报, 2023, 72(23): 236101. doi: 10.7498/aps.72.20231238
    [4] 林麦麦, 王明月, 蒋蕾. 多组分尘埃等离子体中非线性尘埃声孤波的传播特征. 物理学报, 2023, 72(3): 035201. doi: 10.7498/aps.72.20221843
    [5] 段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红. 容性耦合硅烷等离子体尘埃颗粒空间分布的二维流体模拟. 物理学报, 2023, 72(16): 165202. doi: 10.7498/aps.72.20230686
    [6] 罗杨, 陈茂林, 苏冬冬, 许诺, 王忠晶, 韩志聪, 赵豪. 外磁场作用下的磁等离子体动力学过程仿真. 物理学报, 2022, 71(5): 055204. doi: 10.7498/aps.71.20211383
    [7] 林麦麦, 付颖捷, 宋秋影, 于腾萱, 文惠珊, 蒋蕾. 热尘埃等离子体中(2 + 1)维尘埃声孤波的传播特征. 物理学报, 2022, 71(9): 095203. doi: 10.7498/aps.71.20210902
    [8] 崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长. 外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究. 物理学报, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [9] 赵光银, 李应红, 梁华, 化为卓, 韩孟虎. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真. 物理学报, 2015, 64(1): 015101. doi: 10.7498/aps.64.015101
    [10] 李学良, 石雁祥. 双麦克斯韦分布尘埃等离子体中尘埃粒子的充电研究. 物理学报, 2014, 63(21): 215201. doi: 10.7498/aps.63.215201
    [11] 张华, 吴建军, 张代贤, 张锐, 何振. 用于脉冲等离子体推力器烧蚀过程仿真的新型机电模型. 物理学报, 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [12] 安治永, 李应红, 吴 云, 苏长兵, 宋慧敏. 对称等离子体激励器系统电场仿真研究. 物理学报, 2007, 56(8): 4778-4784. doi: 10.7498/aps.56.4778
    [13] 段 萍, 刘金远, 宫 野, 张 宇, 刘 悦, 王晓钢. 等离子体鞘层中尘埃粒子的分布特性. 物理学报, 2007, 56(12): 7090-7099. doi: 10.7498/aps.56.7090
    [14] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响. 物理学报, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [15] 黄勤超, 罗家融, 王华忠, 李 翀. EAST装置等离子体放电位形快速识别研究. 物理学报, 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [16] 杨 靖, 李景镇, 孙秀泉, 龚向东. 硅烷低温等离子体阶跃响应的仿真(1). 物理学报, 2005, 54(7): 3251-3256. doi: 10.7498/aps.54.3251
    [17] 王正汹, 刘金远, 邹 秀, 刘 悦, 王晓钢. 尘埃等离子体鞘层的玻姆判据. 物理学报, 2004, 53(3): 793-797. doi: 10.7498/aps.53.793
    [18] 洪学仁, 段文山, 孙建安, 石玉仁, 吕克璞. 非均匀尘埃等离子体中孤子的传播. 物理学报, 2003, 52(11): 2671-2677. doi: 10.7498/aps.52.2671
    [19] 冯贤平, 徐至展, 江志明, 张正泉, 陈时胜, 范品忠, 田莉, 周智锦. 等离子体中高阶电离离子的空间分布. 物理学报, 1988, 37(7): 1183-1187. doi: 10.7498/aps.37.1183
    [20] 陈雅深. 双Maxwell分布电子驱动的等离子体. 物理学报, 1986, 35(6): 762-770. doi: 10.7498/aps.35.762
计量
  • 文章访问数:  2385
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-30
  • 修回日期:  2024-06-04
  • 上网日期:  2024-07-01
  • 刊出日期:  2024-08-05

/

返回文章
返回