-
利用费曼棘轮原理可以实现将非平衡环境中粒子的随机运动整流成定向运动.本文通过设计尘埃等离子体金属直棘轮实验装置,构建沿棘轮通道分布的不对称等离子体环境,实现了对微米级尘埃颗粒的可控性整流.单分散尘埃颗粒在棘轮通道中能够形成定向输运,其输运方向可通过调节放电功率与气压来精确调控.通过对不同尺寸的尘埃颗粒输运研究发现,这种整流效应具有普适性.为了揭示尘埃颗粒的整流机制,利用等离子体流体模型计算得到了棘轮通道中等离子体参量的二维分布,进一步通过Langevin模拟研究发现,尘埃颗粒在棘轮通道中不同的悬浮高度上受到的棘轮势的不对称取向不同,使得其输运方向不同.本文研究结果为进一步实现尘埃等离子体金属直棘轮中双分散颗粒分离奠定了理论与实验基础.Utilizing the principle of the Feynman ratchet, it is possible to rectify the random motion into directed flow of particles under a nonequilibrium environment. In this paper, an experimental setup for a dusty plasma metal straight ratchet is designed to create an asymmetric plasma environment along the ratchet channel, enabling a controllable rectification of micron-sized dust particles. Monodispersed dust particles can form a directional flow in the ratchet channel, and the transport direction could be precisely controlled by adjusting the discharge power and the gas pressure. Research on the transport of dust particles of varying sizes proves that the rectification effect is universal. To reveal the rectification mechanism of dust particles, a fluid model of plasma is employed to calculate the two-dimensional distribution of plasma parameters within the ratchet channel. Further research through Langevin simulation shows that dust particles experience ratchet potentials with distinct asymmetric orientations at different suspension heights within the ratchet channel, leading to different transport directions. The results of this paper provide a theoretical and experimental foundation for further achieving the separation of bi-disperse particles in dusty plasma metal straight ratchets.
-
Keywords:
- dusty plasma /
- ratchet /
- rectification
-
[1] Merlino R L, Goree J A 2004 Phys. Today 57 32
[2] Xiao Q M, Mao A H, He X L, Zou J T, Yang X Y, Sun M M, Li F, Tang P F, Zhou T C, Wang X G 2024 Plasma Sci. Technol. 26 085301
[3] Langmuir I, Jones H A 1924 Science 59 380
[4] Winter J 2004 Plasma Phys. Control. Fusion 46 B583
[5] Morfill G E, Ivlev A V 2009 Rev. Mod. Phys. 81 1353
[6] Shukla P K, Eliasson B 2009 Rev. Mod. Phys. 81 25
[7] Yuan C X, Yao J F, Bogdanov D V, Bogdanov E A, Kudryavtsev A A, Zhou Z X 2019 Plasma Sources Sci. Technol. 28 095020
[8] Wang J Q, Liu Y, Wang Y, Zhu W J, Zhang W W, Huang F 2021 IEEE Trans. Plasma Sci. 49 1694
[9] Zhao Y Z, Liu S F, Kong W, Yang F 2024 Chin. Phys. B 33 065201
[10] Chu J H, I L 1994 Phys. Rev. Lett. 72 4009
[11] Joshi E, Pustylnik M Y, Thoma M H, Thomas H M, Schwabe M 2023 Phys. Rev. Res. 5 L012030
[12] Du C R, Nosenko V, Thomas H M, Lin Y F, Morfill G E, Ivlev A V 2019 Phys. Rev. Lett. 123 185002
[13] Huang D, Lu S Y, Murillo M S, Feng Y 2022 Phys. Rev. Res. 4 033064
[14] Guan M, Chen Z D, Li M D, Liu Z M, Wang Y M, Yu M Y 2022 Chin. Phys. B 31 025201
[15] Beckers J, Berndt J, Block D, Bonitz M, Bruggeman P J, Couëdel L, Delzanno G L, Feng Y, Gopalakrishnan R, Greiner F, Hartmann P, Horányi M, Kersten H, Knapek C A, Konopka U, Kortshagen U, Kostadinova E G, Kovačević E, Krasheninnikov S I, Mann I, Mariotti D, Matthews L S, Melzer A, Mikikian M, Nosenko V, Pustylnik M Y, Ratynskaia S, Sankaran R M, Schneider V, Thimsen E J, Thomas E, Thomas H M, Tolias P, van de Kerkhof M 2023 Phys. Plasmas 30 120601
[16] Lin M M, Wang M Y, Jiang L 2023 Acta Phys. Sin. 72 035201(in Chinese)[林麦麦,王明月,蒋蕾 2023物理学报72 035201]
[17] Wei L, Liu B, Wang F P, Zhang H, Duan W S 2021 Chin. Phys. B 30 035201
[18] Mamun A A, Shukla P K, Morfill G E 2004 Phys. Rev. Lett. 92 095005
[19] Huang Y F, Jia W Z, Zhang Y Y, Song Y H 2024 Acta Phys. Sin. 73 085202(in Chinese)[黄渝峰, 贾文柱,张莹莹,宋远红2024物理学报73 085202]
[20] Melzer A, Schweigert V A, Piel A 1999 Phys. Rev. Lett. 83 3194
[21] Ivlev A V, Konopka U, Morfill G, Joyce G 2003 Phys. Rev. E 68 026405
[22] Hänggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387
[23] Feynman R P, Leighton R B, Sands M 1963 The Feynman Lectures on Physics (Vol. I)(America: Addison-Wesley Publishing Company) p46
[24] Dupont N, Gabardos L, Arrouas F, Ombredane N, Billy J, Peaudecerf B, Guéry-Odelin D 2023 Phys. Rev. Lett. 131 133401
[25] Fedorova Z, Dauer C, Sidorenko A, Eggert S, Kroha J, Linden S 2021 Phys. Rev. Res. 3 013260
[26] Roeling E M, Germs W C, Smalbrugge B, Geluk E J, de Vries T, Janssen R A J, Kemerink M 2011 Nat. Mater. 10 51
[27] Arzola A V, Volke-Sepulveda K, Mateos J L 2011 Phys. Rev. Lett. 106 168104
[28] He Y F, Ai B Q, Dai C X, Song C, Wang R Q, Sun W T, Liu F C, Feng Y 2020 Phys. Rev. Lett. 124 075001
[29] Zhang S X, Wang S, Yao T Y, Tian M, Fan W L, Liu F C, He Y F 2024 Plasma Sources Sci. Technol. 33 055008
[30] Wang S, Zhang N, Zhang S X, Tian M, Cai Y W, Fan W L, Liu F C, He Y F 2022 Chin. Phys. B 31 065202
[31] Melzer A 2019 Physics of Dusty Plasma:An Introduction (Switzerland:Springer Nature Switzerland AG) p8
[32] Fortov V E, Ivlev A V, Khrapak S A, Khrapak A G, Morfill G E 2005 Phys. Rep. 421 1
计量
- 文章访问数: 73
- PDF下载量: 0
- 被引次数: 0