搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性棘轮在活性粒子浴内的自发定向转动

夏益祺 谌庄琳 郭永坤

引用本文:
Citation:

柔性棘轮在活性粒子浴内的自发定向转动

夏益祺, 谌庄琳, 郭永坤

Spontaneous rotation of ratchet wheel with soft boundary in active particle bath

Xia Yi-Qi, Shen Zhuang-Lin, Guo Yong-Kun
PDF
HTML
导出引用
  • 活性物质在自然界中广泛存在. 利用二维布朗动力学模拟方法, 设计了一种柔性边界棘轮, 并研究了其在活性粒子浴内的动力学行为. 发现棘轮在活性粒子浴内能够发生定向转动, 这是因为活性粒子在柔性边界周围的不均匀分布导致压力的不均匀分布, 进而对棘轮产生扭矩. 进一步研究了影响转动速率的因素, 发现平均转动角速度随活性粒子驱动力、活性粒子密度的增大而增大, 随粒子旋转扩散系数、支架数的增大而降低. 研究结果对于设计新的实验系统来研究此类非平衡物理现象具有一定的指导意义.
    Self-propelling motionisubiquitous in the biological world, ranging from the molecular-level transportation of motor proteins along the microtubules, to the swimming of bacteria on a micrometer scale. An intriguing topic is to design microdevices or micromotors that can rectify the random motion and convert the energy into mechanical work. Here we design a soft microdevice, which may possess the advantages such as damage resistance, durability and adaptability, by utilizing two-dimensional Langevin dynamics simulation. We use a flexible chain to mimic the soft boundary of microdevice. We investigate the dynamical behaviors of microdevice when it is immersed in a thin film of active particle suspension. We find that the microdevicecan rotateunidirectionally and hence output the work. To uncover the physical mechanism of unidirectional rotation, we calculate the pressure distribution along the soft boundary. The spontaneous symmetry breaking of flexible boundary is the origin of the unidirectional rotation, which can lead to the inhomogeneous pressure distribution and hence torque on ratchet. It is because the persistent motion drives the particles to accumulate near the boundary and induce the soft boundary to deform. Further, we focus on the effect of active force and particle density on the angular velocity. With the increase of active force, the average angular velocity increases monotonically due to the increase of torque. With the increase of the number density of active particles, the average angular velocity increases. This is because the aggregation of a large number of particles is beneficial to the increase of ratchet torque. Additionally, we pay attention to the effect of rotational diffusion rate, Dr, of active particles and the number of ratchet wheels. We find the average angular velocity decreases with the increase of rotation diffusion Dr because ofthe ability of particles to weakly accumulate at high Drs. The average angular velocity also decreases with the increase of the number of ratchet wheels. This is because a large number of ratchet wheels weaken the asymmetry of pressure distribution and hence reduce the torque on wheel. Our work provides a new insight into the design of soft microdevices for studying the non-equilibrium system.
      通信作者: 谌庄琳, shenzl@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21674078)资助的课题.
      Corresponding author: Shen Zhuang-Lin, shenzl@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21674078).
    [1]

    Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M D, AditiSimha R 2013 Rev. Mod. Phys. 85 1143Google Scholar

    [2]

    Gao W, Sattayasamitsathit S, Manesh K M, Weihs D, Wang J 2010 J. Am. Chem. Soc. 132 14403Google Scholar

    [3]

    Wang W, Castro L A, Hoyos M, Mallouk T E 2012 ACS Nano 6 6122Google Scholar

    [4]

    Liu R, Sen A 2011 J. Am. Chem. Soc. 133 20064Google Scholar

    [5]

    Deseigne J, Dauchot O, Chaté H 2010 Phys. Rev. Lett. 105 098001Google Scholar

    [6]

    Shi X Q, Ma Y Q 2013 Nat. Commun. 4 3013Google Scholar

    [7]

    Shi X Q, Ma Y Q 2010 Proc. Natl. Acad. Sci. USA 107 11709Google Scholar

    [8]

    Cates M E, Marenduzzo D, Pagonabarraga I, Tailleur J 2010 Proc. Natl. Acad. Sci. USA 107 11715Google Scholar

    [9]

    Lei Q L, Ni R, Ma Y Q 2018 ACS Nano 12 6860Google Scholar

    [10]

    Nikola N, Solon A P, Kafri Y, Kardar M, Tailleur J, Voituriez R 2016 Phys. Rev. Lett. 117 098001Google Scholar

    [11]

    Hiratsuka Y, Miyata M, Tada T, Uyeda T Q 2006 Proc. Natl. Acad. Sci. USA 103 13618Google Scholar

    [12]

    Pelling A E, Sehati S, Gralla E B, Valentine J S, Gimzewski J K 2004 Science 305 1147Google Scholar

    [13]

    Xia Y Q, Shen Z L, Tian W D, Chen K 2019 J. Chem. Phys. 150 154903Google Scholar

    [14]

    Soong R K, Bachand G D, Neves H P, Olkhovets A G, Craighead H G, Montemagno C D 2000 Science 290 1555Google Scholar

    [15]

    Sokolov A, Apodaca M M, Grzybowski B A, Aranson I S 2010 Proc. Natl. Acad. Sci. USA 107 969Google Scholar

    [16]

    Di L R, Angelani L, Dell'arciprete D, Ruocco G, Iebba V, Schippa S, Conte M P, Mecarini F, De A F, Di F E 2010 Proc. Natl. Acad. Sci. USA 107 9541Google Scholar

    [17]

    Angelani L, Di L R, Ruocco G 2009 Phys. Rev. Lett. 102 48104Google Scholar

    [18]

    Kaiser A, Löwen H 2014 J. Chem. Phys. 141 158102

    [19]

    Li H S, Zhang B K, Li J, Tian W D, Chen K 2015 J. Chem. Phys. 143 224903Google Scholar

    [20]

    Tian W D, Gu Y, Guo Y K, Chen K 2017 Chin. Phys. B 26 100502Google Scholar

    [21]

    Li H S, Wang C, Tian W D, Ma Y Q, Xu C, Zheng N, Chen K 2017 Soft Matter 13 8031Google Scholar

    [22]

    Wang C, Ma Y Q, Tian W D, Chen K 2018 J. Chem. Phys. 149 164902Google Scholar

    [23]

    Xia Y Q, Tian W D, Chen K, Ma Y Q 2019 Phys. Chem. Chem. Phys. 21 4487Google Scholar

    [24]

    Plimpton S, Crozier P, Thompson A 2015 J. Appl. Phys. 2 4740

    [25]

    Humphrey W, Dalke A, Schulten K 1996 J. Molec. Graphics. 14 33Google Scholar

    [26]

    Eisenstecken T, Gompper G, Winkler R G 2017 J. Chem. Phys. 146 154903Google Scholar

    [27]

    Bechinger C, Leonardo R D, Löwen H, Reichhardt C, Volpe G, Volpe G 2016 Rev. Mod. Phys. 88 045006Google Scholar

    [28]

    Redner G S, Hagan M F, Baskaran A 2013 Phys. Rev. Lett. 110 055701Google Scholar

    [29]

    Fily Y, Baskaran A, Hagan M F 2014 Soft Matter 10 5609Google Scholar

  • 图 1  棘轮在活性粒子浴中(绿色部分)的初始示意结构 虚线部分表示刚性支架, 红色表示柔性边界, 左上部分绿色粒子中的黑色箭头表示活性粒子的推进力方向, 右上部分为一段边界上的粒子排布, 粒子间间距为0.25σ

    Fig. 1.  The initial structure of flexible boundary (red) in the active particle bath (green). The dashed lines represent four rigid trestles. The black arrow in the green particle indicates the active force direction of the active particle in the upper left. The upper right part is the particle arrangement on a boundary. The spacing between the particles is 0.25σ.

    图 2  (a)四支架棘轮随时间转动的示意图, 图示中刚性支架被忽略, 左上图黑点代表棘轮质心, 其中黑色箭头表示从质心到一支点的方向以此表明棘轮发生转动, 右下图是该情况下的旋转角度与角速度随着时间的变化曲线图; (b)上图为棘轮柔性边界的曲率分布图, 下图为压力分布图, 其中棘轮支架数为Ns = 4, 活性粒子的数密度为φ = 0.025, 旋转扩散系数取Dr = 0.0001, 驱动力F = 40

    Fig. 2.  (a) Schematic diagram of the ratchet rotation with time for Ns = 4, φ = 0.025, Dr = 0.0001, F = 40. The black dot on the top left figure represents the center of mass of the ratchet; the black arrows denote the orientation from the center of mass of ratchet to the fixed point of boundary to indicate the rotation of the ratchet. The right-down figure shows the time evolution of angle and angular velocity of ratchet. (b) The curvature distribution (up) of boundary and the pressure distribution (down) around it

    图 3  支架数为4、不同活性力的作用下, 棘轮的旋转角速度 (a)平均角速度, (b)瞬时角速度, 误差棒表示平均角速度的标准方差

    Fig. 3.  (a) Average angular velocity and (b) instantaneous angular velocity for the four rigid trestles with various active forces. The error bars represent the standard the deviations of angular velocity of rigid trestles.

    图 4  棘轮的平均角速度与粒子数密度之间的关系, 内部两张插图分别对应活性粒子密度φ = 0.025和φ = 0.1, 误差棒表示平均角速度的标准方差

    Fig. 4.  Average angular velocity vs the number density of active particles. The insets are typical snapshots for φ = 0.025 and φ = 0.1. The error bars represent the standard the deviations of angular velocity.

    图 5  (a)不同旋转扩散系数Dr下棘轮的旋转角速度与时间的关系; (b)平均旋转角速度与Dr的关系, 内部两插图分别对应旋转扩散系数Dr = 0.0001和Dr = 0.01, 误差棒表示平均角速度的标准方差

    Fig. 5.  (a) The angular velocity as a function of time for various rotational diffusion coefficients, Drs. (b) The average angular velocity as a function of Dr. The insets are typical snapshots for Dr = 0.0001和and Dr = 0.1. The error bars represent the standard the deviations of angular velocity.

    图 6  棘轮的平均角速度与支架数之间的关系, 内部两插图分别对应支架数为4和6, 误差棒表示平均角速度的标准方差

    Fig. 6.  The average angular velocity of ratchet vs the number of rigid trestle. The insets are typical snapshots for the number of ratchet wheel. The error bars represent the standard the deviations of angular velocity.

  • [1]

    Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M D, AditiSimha R 2013 Rev. Mod. Phys. 85 1143Google Scholar

    [2]

    Gao W, Sattayasamitsathit S, Manesh K M, Weihs D, Wang J 2010 J. Am. Chem. Soc. 132 14403Google Scholar

    [3]

    Wang W, Castro L A, Hoyos M, Mallouk T E 2012 ACS Nano 6 6122Google Scholar

    [4]

    Liu R, Sen A 2011 J. Am. Chem. Soc. 133 20064Google Scholar

    [5]

    Deseigne J, Dauchot O, Chaté H 2010 Phys. Rev. Lett. 105 098001Google Scholar

    [6]

    Shi X Q, Ma Y Q 2013 Nat. Commun. 4 3013Google Scholar

    [7]

    Shi X Q, Ma Y Q 2010 Proc. Natl. Acad. Sci. USA 107 11709Google Scholar

    [8]

    Cates M E, Marenduzzo D, Pagonabarraga I, Tailleur J 2010 Proc. Natl. Acad. Sci. USA 107 11715Google Scholar

    [9]

    Lei Q L, Ni R, Ma Y Q 2018 ACS Nano 12 6860Google Scholar

    [10]

    Nikola N, Solon A P, Kafri Y, Kardar M, Tailleur J, Voituriez R 2016 Phys. Rev. Lett. 117 098001Google Scholar

    [11]

    Hiratsuka Y, Miyata M, Tada T, Uyeda T Q 2006 Proc. Natl. Acad. Sci. USA 103 13618Google Scholar

    [12]

    Pelling A E, Sehati S, Gralla E B, Valentine J S, Gimzewski J K 2004 Science 305 1147Google Scholar

    [13]

    Xia Y Q, Shen Z L, Tian W D, Chen K 2019 J. Chem. Phys. 150 154903Google Scholar

    [14]

    Soong R K, Bachand G D, Neves H P, Olkhovets A G, Craighead H G, Montemagno C D 2000 Science 290 1555Google Scholar

    [15]

    Sokolov A, Apodaca M M, Grzybowski B A, Aranson I S 2010 Proc. Natl. Acad. Sci. USA 107 969Google Scholar

    [16]

    Di L R, Angelani L, Dell'arciprete D, Ruocco G, Iebba V, Schippa S, Conte M P, Mecarini F, De A F, Di F E 2010 Proc. Natl. Acad. Sci. USA 107 9541Google Scholar

    [17]

    Angelani L, Di L R, Ruocco G 2009 Phys. Rev. Lett. 102 48104Google Scholar

    [18]

    Kaiser A, Löwen H 2014 J. Chem. Phys. 141 158102

    [19]

    Li H S, Zhang B K, Li J, Tian W D, Chen K 2015 J. Chem. Phys. 143 224903Google Scholar

    [20]

    Tian W D, Gu Y, Guo Y K, Chen K 2017 Chin. Phys. B 26 100502Google Scholar

    [21]

    Li H S, Wang C, Tian W D, Ma Y Q, Xu C, Zheng N, Chen K 2017 Soft Matter 13 8031Google Scholar

    [22]

    Wang C, Ma Y Q, Tian W D, Chen K 2018 J. Chem. Phys. 149 164902Google Scholar

    [23]

    Xia Y Q, Tian W D, Chen K, Ma Y Q 2019 Phys. Chem. Chem. Phys. 21 4487Google Scholar

    [24]

    Plimpton S, Crozier P, Thompson A 2015 J. Appl. Phys. 2 4740

    [25]

    Humphrey W, Dalke A, Schulten K 1996 J. Molec. Graphics. 14 33Google Scholar

    [26]

    Eisenstecken T, Gompper G, Winkler R G 2017 J. Chem. Phys. 146 154903Google Scholar

    [27]

    Bechinger C, Leonardo R D, Löwen H, Reichhardt C, Volpe G, Volpe G 2016 Rev. Mod. Phys. 88 045006Google Scholar

    [28]

    Redner G S, Hagan M F, Baskaran A 2013 Phys. Rev. Lett. 110 055701Google Scholar

    [29]

    Fily Y, Baskaran A, Hagan M F 2014 Soft Matter 10 5609Google Scholar

  • [1] 田淼, 姚廷昱, 才志民, 刘富成, 贺亚峰. 尘埃等离子体棘轮中颗粒分离的三维模拟. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240319
    [2] 包健, 张文禄, 李定. 高能量电子激发比压阿尔芬本征模的全域模拟研究. 物理学报, 2023, 72(21): 215216. doi: 10.7498/aps.72.20230794
    [3] 陈建, 熊康林, 冯加贵. 单层硅烯表面的CoPc分子吸附研究. 物理学报, 2022, 71(4): 040501. doi: 10.7498/aps.71.20211607
    [4] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [5] 陈建, 熊康林, 冯加贵. 单层硅烯表面的CoPc分子吸附研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211607
    [6] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [7] 王启东, 彭增辉, 刘永刚, 姚丽双, 任淦, 宣丽. 基于混合液晶分子动力学模拟比较液晶分子旋转黏度大小. 物理学报, 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [8] 王琛, 宋海洋, 安敏荣. 界面旋转角对双晶镁力学性质影响的分子动力学模拟. 物理学报, 2014, 63(4): 046201. doi: 10.7498/aps.63.046201
    [9] 张兆慧, 李海鹏, 韩奎. 纳米摩擦中极性有机分子超薄膜的结构、对称性及能量机理. 物理学报, 2013, 62(15): 158701. doi: 10.7498/aps.62.158701
    [10] 张惠, 褚衍东, 丁旺才, 李险峰. 一类三次方对称离散混沌系统的分岔控制. 物理学报, 2013, 62(4): 040202. doi: 10.7498/aps.62.040202
    [11] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟. 物理学报, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [12] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 类金刚石薄膜力学特性的分子动力学模拟. 物理学报, 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [13] 张然, 何军, 彭增辉, 宣丽. 向列相液晶nCB(4-n-alkyl-4′-cyanobiphenyls, n=5—8)的旋转黏度及其奇偶效应的分子动力学模拟. 物理学报, 2009, 58(8): 5560-5566. doi: 10.7498/aps.58.5560
    [14] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟. 物理学报, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [15] 赵九洲, 刘 俊, 赵 毅, 胡壮麒. 压力对非晶铜形成影响的分子动力学模拟. 物理学报, 2007, 56(1): 443-445. doi: 10.7498/aps.56.443
    [16] 张 超, 孟 旸, 颜 超, 唐 鑫, 王永亮, 张庆瑜. Cu-Au体系非对称异质外延行为的分子动力学研究. 物理学报, 2007, 56(1): 452-458. doi: 10.7498/aps.56.452
    [17] 金年庆, 滕玉永, 顾 斌, 曾祥华. 稀有气体原子注入缺陷性纳米碳管的分子动力学模拟. 物理学报, 2007, 56(3): 1494-1498. doi: 10.7498/aps.56.1494
    [18] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [19] 李 欣, 胡元中, 王 慧. 磁盘润滑膜全氟聚醚的分子动力学模拟研究. 物理学报, 2005, 54(8): 3787-3792. doi: 10.7498/aps.54.3787
    [20] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟. 物理学报, 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
计量
  • 文章访问数:  6999
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-27
  • 修回日期:  2019-06-10
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-20

/

返回文章
返回