搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合液晶分子动力学模拟比较液晶分子旋转黏度大小

王启东 彭增辉 刘永刚 姚丽双 任淦 宣丽

引用本文:
Citation:

基于混合液晶分子动力学模拟比较液晶分子旋转黏度大小

王启东, 彭增辉, 刘永刚, 姚丽双, 任淦, 宣丽

Rotational viscosity comparison of liquid crystals based on the molecular dynamics of mixtures

Wang Qi-Dong, Peng Zeng-Hui, Liu Yong-Gang, Yao Li-Shuang, Ren Gan, Xuan Li
PDF
导出引用
  • 提高液晶波前校正器的响应速度是增加液晶自适应光学系统校正带宽的关键, 而研究设计低旋转黏度的液晶分子是提高液晶波前校正器响应速度的根本方法. 利用原子水平上的分子动力学方法获得了目标分子的液相、向列相以及近晶相, 给出了理论计算液晶分子序参数以及旋转黏度的方法. 与此同时, 结合实验方法, 提出利用混合液晶分子动力学模拟来比较液晶分子旋转黏度的大小, 通过多次模拟、多起始点数据处理最大限度消除了因边界尺寸效应带来的数据波动, 最后给出了两种高性能液晶分子的具体比较结果. 这种分子动力学模拟方法能够探查分子结构细微差别对液晶相态以及旋转黏度的影响, 为设计低旋转黏度的液晶分子提供了理论支持, 必将为快速响应液晶材料的设计提供帮助.
    It is critical to improve the response speed of a liquid crystal wavefront corrector in order to increase the bandwidth of a liquid crystal adaptive optics system. The design of liquid crystal molecules with small rotational viscosity becomes a basic method of increasing the response speed of a liquid crystal wavefront corrector. Various phases of liquid crystal from molecular dynamics simulation are given in this paper, and the detailed computational methods of order parameter and rotational viscosity are also presented. Rotational viscosities of liquid crystals are compared based on the molecular dynamics of mixtures. The data fluctuation is reduced effectively through several simulations and the multiple analysis of original data. A detailed process of molecular dynamics of mixtures is given in this paper and the result is greatly satisfactory. We believe that one can perform a better molecular design using this process and obtain a better understanding of molecular interactions of LCs.
    • 基金项目: 国家自然科学基金(批准号:61205021,61475152,61377032,61378075,61405194)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61205021, 61475152, 61377032, 61378075, 61405194).
    [1]

    Kotova S P, Kvashnin M Y, Rakhmatulin M A, Zayakin O A, Guralnik I R, Klimov N A, Clark P, Love G D, Naumov A F, Saunter C D, Loktev M Y, Vdovin G V, Toporkova L V 2002 Opt. Express 10 1258

    [2]

    Cao Z L, Mu Q Q, Hu L F, Liu Y G, Xuan L 2010 Opt. Commun. 283 946

    [3]

    Zhang Z, You Z, Chu D 2014 Light-Sci. Appl. 3 213

    [4]

    Hu H B, Hu L F, Peng Z H, Mu Q Q, Zhang X Y, Liu C, Xuan L 2012 Opt. Lett. 37 3324

    [5]

    Wang Q D, Peng Z H, Fang Q Q, Li X P, Qi M J, Liu Y G, Yao L S, Cao Z L, Mu Q Q, Xuan L 2013 Opt. Commun. 305 236

    [6]

    Peng Z H, Liu Y G, Yao L S, Cao Z L, Mu Q Q, Hu L F, Xuan L 2011 Opt. Lett. 36 3608

    [7]

    Wu S T, Wu C S 1988 Appl. Phys. Lett. 53 1794

    [8]

    Lebwohl P A, Lasher G 1971 Phys. Rev. A 6 426

    [9]

    Yan F, Hixson C, Earl D 2008 Phys. Rev. Lett. 101 157801

    [10]

    Wilson M R 2007 Chem. Soc. Rev. 36 1881

    [11]

    Wilson M R, Allen M P 1992 Liq. Cryst. 12 157

    [12]

    Cook M J, Wilson M R 2001 Mol. Cryst. Liq. Cryst. 363 181

    [13]

    Berardi R, Muccioli L, Zannoni C 2004 Chem. Phys. Chem. 5 104

    [14]

    Cheung D L, Clark S J, Wilson M R 2004 J. Chem. Phys. 121 9131

    [15]

    Lansac Y, Glaser M A, Clark N A, Lavrentovich O D 1999 Nature 398 54

    [16]

    Cacelli I, De Gaetani L, Prampolini G, Tani A 2007 J. Phys. Chem. B 111 2130

    [17]

    Zakharov A, Komolkin A, Maliniak A 1999 Phys. Rev. E 59 6802

    [18]

    Ilk Capar M, Cebe E 2005 Chem. Phys. Lett. 407 454

    [19]

    Zhang R, He J, Peng Z H, Xuan L 2009 Acta Phys. Sin. 58 5560 (in Chinese) [张然, 何军, 彭增辉, 宣丽 2009 物理学报 58 5560]

    [20]

    Gauza S, Li J, Wu S T, Spadlo A, Dabrowski R, Tzeng Y N, Cheng K L 2005 Liq. Cryst. 32 1077

    [21]

    Gauza S, Wen C H, Wu B, Wu S T, Spadlo A, Dabrowski R 2006 Liq. Cryst. 33 705

    [22]

    Peng Z H, Yao L S, Mu Q Q, Zhao J L, Liu Y G, Li D Y, Yan D M 2013 Chin. J. Liq. Cryst. 28 479 (in Chinese) [彭增辉, 姚丽双, 穆全全, 赵晶丽, 刘永刚, 李大禹, 闫冬梅 2013 液晶与显示 28 479]

    [23]

    Wang J, Wolf R M, Caldwell J W, Kollman P A, Case D A 2004 J. Comput. Chem. 25 1157

    [24]

    Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E, Berendsen H J C 2005 J. Comput. Chem. 26 1701

    [25]

    Hess B, Kutzner C, van der Spoel D, Lindahl E 2008 J. Chem. Theory Comput. 4 435

    [26]

    Matsushita T, Koseki S 2005 J. Chem. Phys. B 109 13493

    [27]

    Zhang R 2009 Ph. D. Dissertation (Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences) (in Chinese) [张然 2009 博士学位论文(长春: 中国科学院长春光学精密机械与物理研究所)]

  • [1]

    Kotova S P, Kvashnin M Y, Rakhmatulin M A, Zayakin O A, Guralnik I R, Klimov N A, Clark P, Love G D, Naumov A F, Saunter C D, Loktev M Y, Vdovin G V, Toporkova L V 2002 Opt. Express 10 1258

    [2]

    Cao Z L, Mu Q Q, Hu L F, Liu Y G, Xuan L 2010 Opt. Commun. 283 946

    [3]

    Zhang Z, You Z, Chu D 2014 Light-Sci. Appl. 3 213

    [4]

    Hu H B, Hu L F, Peng Z H, Mu Q Q, Zhang X Y, Liu C, Xuan L 2012 Opt. Lett. 37 3324

    [5]

    Wang Q D, Peng Z H, Fang Q Q, Li X P, Qi M J, Liu Y G, Yao L S, Cao Z L, Mu Q Q, Xuan L 2013 Opt. Commun. 305 236

    [6]

    Peng Z H, Liu Y G, Yao L S, Cao Z L, Mu Q Q, Hu L F, Xuan L 2011 Opt. Lett. 36 3608

    [7]

    Wu S T, Wu C S 1988 Appl. Phys. Lett. 53 1794

    [8]

    Lebwohl P A, Lasher G 1971 Phys. Rev. A 6 426

    [9]

    Yan F, Hixson C, Earl D 2008 Phys. Rev. Lett. 101 157801

    [10]

    Wilson M R 2007 Chem. Soc. Rev. 36 1881

    [11]

    Wilson M R, Allen M P 1992 Liq. Cryst. 12 157

    [12]

    Cook M J, Wilson M R 2001 Mol. Cryst. Liq. Cryst. 363 181

    [13]

    Berardi R, Muccioli L, Zannoni C 2004 Chem. Phys. Chem. 5 104

    [14]

    Cheung D L, Clark S J, Wilson M R 2004 J. Chem. Phys. 121 9131

    [15]

    Lansac Y, Glaser M A, Clark N A, Lavrentovich O D 1999 Nature 398 54

    [16]

    Cacelli I, De Gaetani L, Prampolini G, Tani A 2007 J. Phys. Chem. B 111 2130

    [17]

    Zakharov A, Komolkin A, Maliniak A 1999 Phys. Rev. E 59 6802

    [18]

    Ilk Capar M, Cebe E 2005 Chem. Phys. Lett. 407 454

    [19]

    Zhang R, He J, Peng Z H, Xuan L 2009 Acta Phys. Sin. 58 5560 (in Chinese) [张然, 何军, 彭增辉, 宣丽 2009 物理学报 58 5560]

    [20]

    Gauza S, Li J, Wu S T, Spadlo A, Dabrowski R, Tzeng Y N, Cheng K L 2005 Liq. Cryst. 32 1077

    [21]

    Gauza S, Wen C H, Wu B, Wu S T, Spadlo A, Dabrowski R 2006 Liq. Cryst. 33 705

    [22]

    Peng Z H, Yao L S, Mu Q Q, Zhao J L, Liu Y G, Li D Y, Yan D M 2013 Chin. J. Liq. Cryst. 28 479 (in Chinese) [彭增辉, 姚丽双, 穆全全, 赵晶丽, 刘永刚, 李大禹, 闫冬梅 2013 液晶与显示 28 479]

    [23]

    Wang J, Wolf R M, Caldwell J W, Kollman P A, Case D A 2004 J. Comput. Chem. 25 1157

    [24]

    Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E, Berendsen H J C 2005 J. Comput. Chem. 26 1701

    [25]

    Hess B, Kutzner C, van der Spoel D, Lindahl E 2008 J. Chem. Theory Comput. 4 435

    [26]

    Matsushita T, Koseki S 2005 J. Chem. Phys. B 109 13493

    [27]

    Zhang R 2009 Ph. D. Dissertation (Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences) (in Chinese) [张然 2009 博士学位论文(长春: 中国科学院长春光学精密机械与物理研究所)]

计量
  • 文章访问数:  2261
  • PDF下载量:  282
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-19
  • 修回日期:  2015-05-05
  • 刊出日期:  2015-06-05

基于混合液晶分子动力学模拟比较液晶分子旋转黏度大小

  • 1. 中国科学院长春光学精密机械与物理研究所, 应用光学国家重点实验室, 长春 130022;
  • 2. 中国科学院大学, 北京 100039;
  • 3. 中国科学院理论物理研究所, 理论物理国家重点实验室, 北京 100190
    基金项目: 

    国家自然科学基金(批准号:61205021,61475152,61377032,61378075,61405194)资助的课题.

摘要: 提高液晶波前校正器的响应速度是增加液晶自适应光学系统校正带宽的关键, 而研究设计低旋转黏度的液晶分子是提高液晶波前校正器响应速度的根本方法. 利用原子水平上的分子动力学方法获得了目标分子的液相、向列相以及近晶相, 给出了理论计算液晶分子序参数以及旋转黏度的方法. 与此同时, 结合实验方法, 提出利用混合液晶分子动力学模拟来比较液晶分子旋转黏度的大小, 通过多次模拟、多起始点数据处理最大限度消除了因边界尺寸效应带来的数据波动, 最后给出了两种高性能液晶分子的具体比较结果. 这种分子动力学模拟方法能够探查分子结构细微差别对液晶相态以及旋转黏度的影响, 为设计低旋转黏度的液晶分子提供了理论支持, 必将为快速响应液晶材料的设计提供帮助.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回