搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液晶在电场和剪切耦合作用下的流变学行为

乔小溪 张向军 田煜 孟永钢 温诗铸

引用本文:
Citation:

液晶在电场和剪切耦合作用下的流变学行为

乔小溪, 张向军, 田煜, 孟永钢, 温诗铸

Study the coupling effect of shear and electric field on rheological behaviors of liquid crystals

Qiao Xiao-Xi, Zhang Xiang-Jun, Tian Yu, Meng Yong-Gang, Wen Shi-Zhu
PDF
导出引用
  • 本文通过理论和实验对液晶 5CB在剪切和电场耦合作用下流变行为进行了研究. 采用液晶连续理论, 建立了包括界面锚定能, 弹性自由能, 介电自由能和流动能在内的系统 Gibbs自由能公式, 通过最小化系统自由能的方法求解液晶在剪切和电场耦合作用下的取向分布及其黏度变化, 从分子基础模型上揭示了液晶在耦合作用下的流变行为、微观机理及其影响规律, 并通过流变测试对此进行验证. 对比分析了理论和试验结果的误差和原因, 发现界面锚定效应对于液晶分子的取向和黏度具有重要影响. 理论和试验结果均表明, 液晶在电场作用下具有明显的电黏效应, 表现出非牛顿流变行为, 其黏度值由剪切和电场的竞争和耦合作用共同决定. 在外电场作用下液晶的黏度可以增加到初始值的 4倍左右, 液晶这种其自身黏度可随着外场 (例如运动速度) 改变的特性在一定的条件下可以自适应地满足不同工况对黏度的要求, 这对实现智能摩擦润滑具有重要的意义.
    The rheological behaviors of 5CB liquid crystal under the coupling effect of shear and electric field are investigated by theoretical and experimental study. Establish calculating equation of the system Gibbs free energy by adopting the continuum theory of liquid crystals which contains anchoring energy, elastic free energy, dielectric free energy and flow energy. Then the molecular orientation angle distribution and apparent viscosity of liquid crystal under the coupling effect are obtained by minimizing the Gibbs free energy, revealing the microscopic mechanism of rheological behaviors and influence rules of coupling effect from the molecular model. Meanwhile the calculated results are verified by rheological test. Comparative Analysis of the errors and reasons of theoretical and experimental results, which demonstrates that anchoring effect plays an important role in the molecular orientation and viscosity of liquid crystal. Both the theoretical and experimental results indicate that liquid crystals have electroviscous effect and behavior like non-Newtonian liquids under electric field. The viscosities of liquid crystals are determined by the coupling and competition action of shear and electric field, which can reach 4 times of its original value under electric field. This property of controllable viscosity is important in tribology, which can self-adaptively satisfy the requirement of viscosities for different working conditions as a "smart lubrication" under certain condition.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB934101);国家自然科学基金(批准号: 50975154, 51175282)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (973) (Grant No. 2012CB934101), and the National Natural Science Foundation of China (Grant Nos. 50975154, 51175282).
    [1]

    Iglesias P, Bermudez M D, Carrion F J, Martinez-Nicolas G 2004 Wear 256 386

    [2]

    Zhang C L, Zhang S M, Yu L G, Zhang P Y, Zhang Z J, Wu Z S 2012 Tribology Letters 1 49

    [3]

    Ge L L, Chen L P, Guo R 2007 Tribology Letters 2 123

    [4]

    Morishita S, Matsumura Y, Shiraishi T 2002 Journal of Japanese Society of Tribologists 11 846

    [5]

    Shen M W, Luo J B, Wen S Z, Yao J B 2001 Chinese Science Bulletin 7 603 (in Chinese) [沈明武, 雒建斌, 温诗铸, 姚俊斌 2001 科学通报 7 603]

    [6]

    Yao J B, Wen S Z, Wang Q L, Chen S Q, Xu M 2000 Lubrication Engineering 3 24 (in Chinese) [姚俊兵, 温诗铸, 王清亮, 陈声强, 徐敏 2000 润滑与密封 3 24]

    [7]

    Zhang X J, Zhang X H, Xiong Y, Tian Y, Wen S Z 2012 Rheologica Acta 3 267

    [8]

    Amann T, Dold C, Kailer A 2012 Soft Matter 38 9840

    [9]

    Nakano K 2004 Journal of Japanese Society of Society of Tribologists 1 36

    [10]

    Shen M W, Luo J B, Wen S Z, Yao J B 2002 Lubrication Engineering 3 18

    [11]

    de Gennes P G, Prost J 1993 The Physics of Liquid Crystals (New York: Oxford University Press)

    [12]

    Xie Y Z 1988 Physics of Liquid Crystal (Beijing: Science Press)(in Chinese) [谢毓章 1988 液晶物理学 (北京: 科学出版社) ]

    [13]

    Pasechnik S V, Chigrinov V G, Shmeliova D V 2009 Liquid Crystals: Viscous and Elastic properties (Weinheim: Wiley-VCH)

    [14]

    Wen S Z, Huang P 2008 Principles of Tribology (3rd Ed) (Beijing: Tsinghua University Press) (in Chinese) [温诗铸, 黄平 2008 摩擦学原理 (北京: 清华大学出版社)]

    [15]

    Medina J C, Mendoza C I 2008 Europhysics Letters 84 160021

    [16]

    Negita K 1996 Journal of Chemical Physics 17 7837

    [17]

    Reyes J A, Corella M A, Mendoza C I 2008 Journal of Chemical Physics 129 0847108

    [18]

    Reyes J A, Manero O, Rodriguez R F 2001 Rheologica Acta 5 426

    [19]

    Guillen A D, Mendoza C I 2007 Journal of Chemical Physics 126 204905

    [20]

    He S L, Wang Q 2001Acta Phys. Sin. 50 926 (in Chinese) [何赛灵, 王谦 2001 物理学报50 926]

    [21]

    Matthias H, Roder T, Wehrspohn R B, Kitzerow H S, Matthias S, Picken S J 2005 Appl. Phys. Lett. 87 24110524

    [22]

    Miesowicz M 1946 Nature 158 27

  • [1]

    Iglesias P, Bermudez M D, Carrion F J, Martinez-Nicolas G 2004 Wear 256 386

    [2]

    Zhang C L, Zhang S M, Yu L G, Zhang P Y, Zhang Z J, Wu Z S 2012 Tribology Letters 1 49

    [3]

    Ge L L, Chen L P, Guo R 2007 Tribology Letters 2 123

    [4]

    Morishita S, Matsumura Y, Shiraishi T 2002 Journal of Japanese Society of Tribologists 11 846

    [5]

    Shen M W, Luo J B, Wen S Z, Yao J B 2001 Chinese Science Bulletin 7 603 (in Chinese) [沈明武, 雒建斌, 温诗铸, 姚俊斌 2001 科学通报 7 603]

    [6]

    Yao J B, Wen S Z, Wang Q L, Chen S Q, Xu M 2000 Lubrication Engineering 3 24 (in Chinese) [姚俊兵, 温诗铸, 王清亮, 陈声强, 徐敏 2000 润滑与密封 3 24]

    [7]

    Zhang X J, Zhang X H, Xiong Y, Tian Y, Wen S Z 2012 Rheologica Acta 3 267

    [8]

    Amann T, Dold C, Kailer A 2012 Soft Matter 38 9840

    [9]

    Nakano K 2004 Journal of Japanese Society of Society of Tribologists 1 36

    [10]

    Shen M W, Luo J B, Wen S Z, Yao J B 2002 Lubrication Engineering 3 18

    [11]

    de Gennes P G, Prost J 1993 The Physics of Liquid Crystals (New York: Oxford University Press)

    [12]

    Xie Y Z 1988 Physics of Liquid Crystal (Beijing: Science Press)(in Chinese) [谢毓章 1988 液晶物理学 (北京: 科学出版社) ]

    [13]

    Pasechnik S V, Chigrinov V G, Shmeliova D V 2009 Liquid Crystals: Viscous and Elastic properties (Weinheim: Wiley-VCH)

    [14]

    Wen S Z, Huang P 2008 Principles of Tribology (3rd Ed) (Beijing: Tsinghua University Press) (in Chinese) [温诗铸, 黄平 2008 摩擦学原理 (北京: 清华大学出版社)]

    [15]

    Medina J C, Mendoza C I 2008 Europhysics Letters 84 160021

    [16]

    Negita K 1996 Journal of Chemical Physics 17 7837

    [17]

    Reyes J A, Corella M A, Mendoza C I 2008 Journal of Chemical Physics 129 0847108

    [18]

    Reyes J A, Manero O, Rodriguez R F 2001 Rheologica Acta 5 426

    [19]

    Guillen A D, Mendoza C I 2007 Journal of Chemical Physics 126 204905

    [20]

    He S L, Wang Q 2001Acta Phys. Sin. 50 926 (in Chinese) [何赛灵, 王谦 2001 物理学报50 926]

    [21]

    Matthias H, Roder T, Wehrspohn R B, Kitzerow H S, Matthias S, Picken S J 2005 Appl. Phys. Lett. 87 24110524

    [22]

    Miesowicz M 1946 Nature 158 27

  • [1] 王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐. 表面液晶-垂直腔面发射激光器阵列的热特性. 物理学报, 2020, 69(6): 064203. doi: 10.7498/aps.69.20191793
    [2] 阎昊岚, 程雅青, 王凯礼, 王雅昕, 陈洋玮, 袁秋林, 马恒. 烷基环己苯异硫氰酸液晶材料太赫兹波吸收. 物理学报, 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [3] 王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青. 太赫兹液晶材料与器件研究进展. 物理学报, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [4] 梁琴, 陈征宇. 受限液晶系统的理论新进展. 物理学报, 2016, 65(17): 174201. doi: 10.7498/aps.65.174201
    [5] 陈泽章. 太赫兹波段液晶分子极化率的理论研究. 物理学报, 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [6] 杨傅子. 从plasmon到nanoplasmonics——近代光子学前沿及液晶在其动态调制中的应用. 物理学报, 2015, 64(12): 124214. doi: 10.7498/aps.64.124214
    [7] 王家璐, 杜木清, 张伶莉, 刘永军, 孙伟民. 基于不同液晶填充光子晶体光纤传输特性的研究. 物理学报, 2015, 64(12): 120702. doi: 10.7498/aps.64.120702
    [8] 王启东, 彭增辉, 刘永刚, 姚丽双, 任淦, 宣丽. 基于混合液晶分子动力学模拟比较液晶分子旋转黏度大小. 物理学报, 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [9] 唐远河, 吴勇. 基于液晶和DSP的强光局部选通智能网络摄像系统研究. 物理学报, 2013, 62(21): 214210. doi: 10.7498/aps.62.214210
    [10] 周建伟, 梁静秋, 梁中翥, 田超, 秦余欣, 王维彪. 光控液晶光子晶体微腔全光开关. 物理学报, 2013, 62(13): 134208. doi: 10.7498/aps.62.134208
    [11] 王豆豆, 王丽莉, 李冬冬. 热可调液晶填充微结构聚合物光纤设计及特性分析. 物理学报, 2012, 61(12): 128101. doi: 10.7498/aps.61.128101
    [12] 王晓东, 欧阳洁, 苏进. 非均匀剪切流场中液晶聚合物微观结构的无网格模拟. 物理学报, 2010, 59(9): 6369-6376. doi: 10.7498/aps.59.6369
    [13] 郑致刚, 李文萃, 刘永刚, 宣 丽. 双重复合式液晶/聚合物电调谐光栅的制备. 物理学报, 2008, 57(11): 7344-7348. doi: 10.7498/aps.57.7344
    [14] 任广军, 姚建铨, 王 鹏, 张 强, 张会云, 张玉萍. 液晶磁致旋光的研究. 物理学报, 2007, 56(2): 994-998. doi: 10.7498/aps.56.994
    [15] 殷建玲, 黄旭光, 刘颂豪, 胡社军. 液晶调制的光子晶体可控偏光片和光开关. 物理学报, 2006, 55(10): 5268-5276. doi: 10.7498/aps.55.5268
    [16] 苗明川, 徐则达, 侯 钢, 樊尚春. 液晶稳态和瞬态多波混频与非线性光学特性. 物理学报, 2005, 54(10): 4776-4781. doi: 10.7498/aps.54.4776
    [17] 毕亚军, 杨国琛, 关荣华. 液晶胆甾相的形成机制. 物理学报, 2004, 53(12): 4287-4292. doi: 10.7498/aps.53.4287
    [18] 于涛, 彭增辉, 阮圣平, 宣丽. 单体光交联制备液晶垂直取向膜. 物理学报, 2004, 53(1): 316-319. doi: 10.7498/aps.53.316
    [19] 刘红. 双轴向列相液晶的表面能. 物理学报, 2002, 51(12): 2786-2792. doi: 10.7498/aps.51.2786
    [20] 刘 红. 丝状相液晶由表面相互作用产生的相变. 物理学报, 2000, 49(7): 1321-1326. doi: 10.7498/aps.49.1321
计量
  • 文章访问数:  2731
  • PDF下载量:  708
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-27
  • 修回日期:  2013-05-28
  • 刊出日期:  2013-09-05

液晶在电场和剪切耦合作用下的流变学行为

  • 1. 清华大学摩擦学国家重点试验室, 北京 100084
    基金项目: 国家重点基础研究发展计划(批准号: 2012CB934101);国家自然科学基金(批准号: 50975154, 51175282)资助的课题.

摘要: 本文通过理论和实验对液晶 5CB在剪切和电场耦合作用下流变行为进行了研究. 采用液晶连续理论, 建立了包括界面锚定能, 弹性自由能, 介电自由能和流动能在内的系统 Gibbs自由能公式, 通过最小化系统自由能的方法求解液晶在剪切和电场耦合作用下的取向分布及其黏度变化, 从分子基础模型上揭示了液晶在耦合作用下的流变行为、微观机理及其影响规律, 并通过流变测试对此进行验证. 对比分析了理论和试验结果的误差和原因, 发现界面锚定效应对于液晶分子的取向和黏度具有重要影响. 理论和试验结果均表明, 液晶在电场作用下具有明显的电黏效应, 表现出非牛顿流变行为, 其黏度值由剪切和电场的竞争和耦合作用共同决定. 在外电场作用下液晶的黏度可以增加到初始值的 4倍左右, 液晶这种其自身黏度可随着外场 (例如运动速度) 改变的特性在一定的条件下可以自适应地满足不同工况对黏度的要求, 这对实现智能摩擦润滑具有重要的意义.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回