搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层硅烯表面的CoPc分子吸附研究

陈建 熊康林 冯加贵

引用本文:
Citation:

单层硅烯表面的CoPc分子吸附研究

陈建, 熊康林, 冯加贵

Adsorption of CoPc molecules on silicene surface

Chen Jian, Xiong Kang-Lin, Feng Jia-Gui
PDF
HTML
导出引用
  • 由于低维材料表面上的单原子和分子具有丰富的物理化学性质, 现已经成为量子器件及催化科学等领域的研究热点. 单层硅烯在不同的衬底制备温度下, 表现出丰富的超结构, 这些超结构为实现有序的单原子或分子吸附提供了可靠的模板. 利用原位硅烯薄膜制备, 分子沉积, 超高真空扫描隧道显微镜以及扫描隧道谱, 本文研究了Ag(111)衬底上3种硅烯超结构((4 × 4), ($ \sqrt {{\text{13}}} $ × $ \sqrt {{\text{13}}} $), ($ 2\sqrt {\text{3}} $ × $ 2\sqrt {\text{3}} $))的电子态结构, 表面功函数随超结构的变化, 以及CoPc分子在这3种超结构硅烯上的吸附行为. 研究结果表明, 这3种超结构的硅烯具有类似的电子能带结构, 且存在电子从Ag(111)衬底转移到硅烯上的可能性, 从而导致硅烯的表面功函数增大, 表面功函数在原子级尺度上的变化对分子的选择性吸附起着重要作用. 此外, 还观察到分子与硅烯的相互作用导致CoPc分子的电子结构发生对称性破缺.
    As their characteristic dimensions are reduced to the nanoscale regime, such as single layer and single atom, the materials exhibit novel physical and chemical properties. Both the two-dimensional materials and the ordered array of single atoms or molecules have become cutting-edge research topics in the area of modern quantum devices and catalytic science. Silicene prepared on the Ag(111) substrate exhibits abundant superstructures at different substrate temperatures and coverages. These superstructures can be reliable templates for fabricating the ordered array of single atoms or molecules. Using in-situ silicene preparation, molecular deposition, ultra-high vacuum scanning tunneling microscope (STM), and scanning tunneling spectroscopy (STS), the electronic structures, surface work functions and adsorption behaviors of CoPc molecules on three silicene superstructures ((4 × 4), ($\sqrt {13} \times \sqrt {13} $), and ($2\sqrt 3 \times 2\sqrt 3 $)) are studied. Firstly, the three silicene superstructures have similar electronic structures according to the characterization from the dI/dV curve at 77 K. The electronic structure varies on an atomic scale. With the disordering increasing, the full width at half maximum of the +0.6 V states broadens from (4 × 4) to ($\sqrt {13} \times \sqrt {13} $) to ($2\sqrt 3 \times 2\sqrt 3 $). Secondly, the average surface work functions of the three superstructures of silicene also vary on an atomic scale and are all higher than those on the Silver surface. So, electrons are probably transferred from the Ag substrate to the single-layer silicene. The number of the transferred electrons increases from (4 × 4) structure, ($\sqrt {13} \times \sqrt {13} $) structure, to ($2\sqrt 3 \times 2\sqrt 3 $) structure. Thirdly, the change of the surface work function on an atomic scale plays an important role in selectively adsorbing the CoPc molecules, which causes the symmetry of CoPc electronic structure to break. It indicates that none of the three silicene superstructures belongs to a complete π-bond system. Especially, on the (4 × 4) superstructure, all CoPc molecules are divided into two halves. One half is similar to the free standing ones, in which there are HOMO (–0.45 V) and LUMO (+0.7 V) state. The other half has strong interaction with the silicene. The HOMO state is suppressed and there is a hybrid state at 1.0 V according to the dI/dV characterization.
      通信作者: 熊康林, klxiong2008@sinano.ac.cn ; 冯加贵, jgfeng2017@sinano.ac.cn
    • 基金项目: 江苏省自然科学基金(批准号: BK20180255)、中国科学院青年创新促进会(批准号: 2019319)和中国科学院苏州纳米技术与纳米仿生研究所自有课题(批准号: Y9AAD110)资助的课题
      Corresponding author: Xiong Kang-Lin, klxiong2008@sinano.ac.cn ; Feng Jia-Gui, jgfeng2017@sinano.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20180255), Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2019319), and Own Project from Suzhou Institute of Nano-Tech and Nano-Bionics of Chinese Academy of Sciences (Grant No. Y9AAD110).
    [1]

    Ternes M, Heinrich A J, Schneider W D 2008 J. Phys.: Condens. Matter 21 053001

    [2]

    He Y, Gorman S K, Keith D, Kranz L, Keizer J G, Simmons M Y 2019 Nature 571 371Google Scholar

    [3]

    Fricke L, Hile S J, Kranz L, Chung Y, He Y, Pakkiam P, House M G, Keizer J G, Simmons MY 2021 Nat. Commun. 12 3323Google Scholar

    [4]

    Wang A, Li J, Zhang T 2018 Nat. Rev. Chem. 2 65Google Scholar

    [5]

    Samantaray M K, D'Elia V, Pump E, Falivene L, Harb M, Chikh S O, Cavallo L, Basset J M 2020 Chem. Rev. 120 734Google Scholar

    [6]

    Kharadi M A, Malik G F A, Khanday F A, Shah K A, Mittal S, KaushikB K 2020 ECS J. Solid State Sci. Technol. 9 115031Google Scholar

    [7]

    Gao N, Lu G Y, Jiang Q 2017 J. Mater. Chem. C 5 627Google Scholar

    [8]

    Guo Z X, Furuya S, Iwata J, Oshiyama A 2013 Phys. Rev. B 87 235435Google Scholar

    [9]

    Lin C L, Kim B K, Ahn Y H, Kim J J, Choi M S, Bae M H, Kang K, Lim J S, López R, KimN 2013 Phys. Rev. Lett. 110 076803Google Scholar

    [10]

    Stephan R, Hanf M C, Sonnet P 2015 J. Phys.:Condens. Matter 27 015002Google Scholar

    [11]

    Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, LayG L 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [12]

    Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507Google Scholar

    [13]

    Enriquez H, Vizzini S, Kara A, Lalmi B, Oughaddou H 2012 J. Phys.:Condens. Matter 24 314211Google Scholar

    [14]

    Resta A, Leoni T, Barth C, Ranguis A, Becker C, Bruhn T, Vogt P, Lay GL 2013 Sci. Rep. 3 2399Google Scholar

    [15]

    Kawahara K, Shirasawa T, Arafune R, Lin C L, Takahashi T, Kawai M, Takagi N 2014 Surf. Sci. 623 25Google Scholar

    [16]

    Ryuichi A, Liang L C, Kazuaki K, Noriyuki T, Emi M, Kim Y, Noriaki T, Maki K 2013 Surf. Sci. 608 297Google Scholar

    [17]

    Liu ZL, Wang MX, Liu C H, Jia JF, Vogt P, Quaresima C, Ottaviani C, Olivieri B, DePadova P, Lay G L 2014 APL Mat. 2 092513Google Scholar

    [18]

    RahmanMS, Nakagawa T, MizunoS 2015 Jpn. J. Appl. Phys. 54 015502Google Scholar

    [19]

    Jamgotchian H, Ealet B, Colignon Y, Maradj H, Hoarau JY, Biberian JP, AufrayB 2015 J. Phys. Condens. Matter 27 395002Google Scholar

    [20]

    Curcella A, Bernard R, Borensztein Y, Resta A, Lazzeri M, Prévot G 2016 Phys. Rev. B 94 165438Google Scholar

    [21]

    Curcella A, Bernard R, Borensztein Y, Resta A, Lazzeri M, Prévot G 2019 Phys. Rev. B 99 205411Google Scholar

    [22]

    Pawlak R, Drechsel C, D’Astolfo P, Kisiel M, Meyer E, Cerda J I 2020 PNAS 117 228Google Scholar

    [23]

    Krull C, Robles R, Mugarza A, GambardellaP 2013 Nat. Mater. 12 337Google Scholar

    [24]

    Liu L W, Yang K, Jiang Y H, Song B Q, Xiao W D, Song S R, Du S X, Ouyang M, Hofer WA, Neto AHC, Gao HJ 2015 Phys. Rev. Lett. 114 126601Google Scholar

    [25]

    Wintterlin J, BocquetM L 2009 Surf. Sci. 603 1841Google Scholar

    [26]

    Li Z Y, Li B, Yang J L, Hou J G 2010 Acc. Chem. Res. 43 954Google Scholar

    [27]

    Mugarza A, Robles R, Krull C, Korytr R, Lorente N, GambardellaP 2012 Phys. Rev. B 85 155437Google Scholar

  • 图 1  硅烯的STM形貌图和STS谱图 (a)(4 × 4)和($ \sqrt {{\text{13}}} $ × $ \sqrt {{\text{13}}} $)超结构及Ag衬底; (b) ($ 2\sqrt {\text{3}} $ × $ 2\sqrt {\text{3}} $)超结构及Ag衬底; (c)不同重构结构的dI/dV谱图

    Fig. 1.  STM topography and STS curves: (a) (4 × 4) and ($ \sqrt {{\text{13}}} $ × $ \sqrt {{\text{13}}} $) superstructures and Ag substrate; (b) ($2\sqrt 3 \times $$ 2\sqrt 3$) superstructure and Ag substrate; (c) dI/dV spectral curves of different reconstructed structures.

    图 2  硅烯的表面功函数(a), (c)和(e)分别为(4 × 4), ($ \sqrt {{\text{13}}} $ × $ \sqrt {{\text{13}}} $), ($ 2\sqrt {\text{3}} $ × $ 2\sqrt {\text{3}} $)超结构的表面功函数图; (b), (d)和(f)对应获得的STM形貌图; (g)3种超结构和Ag衬底的平均表面功函数分布, 插图是Ag(111)表面功函数图; (h)(4 × 4)超结构的原子模型, 插图是高分辨率的(4 × 4)超结构STM图像

    Fig. 2.  Surface work function of silicene: (a), (c), (e) (4 × 4), ($ \sqrt {{\text{13}}} $ × $ \sqrt {{\text{13}}} $), ($ 2\sqrt {\text{3}} $ × $ 2\sqrt {\text{3}} $) super structures of the surface work function maps, respectively; (b), (d), (f) the corresponding STM topography images obtained at the same time; (g) the average surface work function distribution of the three superstructures and Ag substrates, the inset is a diagram of the height of the Ag(111) surface barrier; (h) atomic model of (4 × 4) super structure, the inset is a high resolution STM image of (4 × 4) superstructure.

    图 3  CoPc分子吸附在 (a) (4 × 4), (c) ($ \sqrt {{\text{13}}} $ × $ \sqrt {{\text{13}}} $), (e) ($ 2\sqrt {\text{3}} $ × $ 2\sqrt {\text{3}} $)超结构上的STM形貌图, 扫描条件见实验条件部分; (b), (d)和(f)是其相应的偏压为–0.4 V的dI/dV谱图

    Fig. 3.  STM topography images of CoPc molecules adsorbed on superstructures of (a) (4 × 4), (c) ($ \sqrt {{\text{13}}} $ × $ \sqrt {{\text{13}}} $) and (e) ($ 2\sqrt {\text{3}} $ × $ 2\sqrt {\text{3}} $), the scanning parameters are described in the experiment condition section; (b), (d) and (f) show their corresponding dI/dV spectrum map sat -0.4 V.

    图 4  (a), (b)偏压分别为–1.00 V和+1.00 V时, 单个CoPc分子在(4 × 4)重构表面上的STM形貌图; (c), (d)和(f)偏压分别为–0.40 V、+0.70 V和+1.00 V时, 单个CoPc分子的dI/dV谱图; (f), (g)分别为在重构表面及单个CoPc分子上获得的dI/dV曲线

    Fig. 4.  (a), (b) The STM images of a single CoPc molecule adsorbed on (4 × 4) reconstructed surface when the sample bias is –1.00 V and +1.00 V, respectively; (c), (d), (f) the dI/dV spectra on a single CoPc molecule when the sample bias voltage is –0.40 V, +0.70 V and +1.00 V, respectively; (f), (g) the dI/dV curves obtained on (4 × 4) reconstructed surface and a single CoPc molecule, respectively.

    图 A1  在–0.4 V的扫描状态下, 利用1.5 V, 5 ms的脉冲对(4 × 4)的硅烯超结构上吸附的CoPc分子进行操控, 实现CoPc分子的原位转动(a)未做任何脉冲操控前的分子形貌图;(b)对标记为1的分子完成脉冲操控后的形貌图;(c)对标记为2的分子完成脉冲操控后的形貌图

    Fig. A1.  The scanning bias is –0.4 V, use a 1.5 V, 5 ms pulse to manipulate the CoPc molecules adsorbed on the (4 × 4) silicene superstructure to realize the in-situ rotation of the CoPc molecules: (a) The molecular topography before any pulse manipulation; (b) the topography of the molecule marked 1 after pulse manipulation; (c) the topography of the molecule marked 2 after pulse manipulation.

  • [1]

    Ternes M, Heinrich A J, Schneider W D 2008 J. Phys.: Condens. Matter 21 053001

    [2]

    He Y, Gorman S K, Keith D, Kranz L, Keizer J G, Simmons M Y 2019 Nature 571 371Google Scholar

    [3]

    Fricke L, Hile S J, Kranz L, Chung Y, He Y, Pakkiam P, House M G, Keizer J G, Simmons MY 2021 Nat. Commun. 12 3323Google Scholar

    [4]

    Wang A, Li J, Zhang T 2018 Nat. Rev. Chem. 2 65Google Scholar

    [5]

    Samantaray M K, D'Elia V, Pump E, Falivene L, Harb M, Chikh S O, Cavallo L, Basset J M 2020 Chem. Rev. 120 734Google Scholar

    [6]

    Kharadi M A, Malik G F A, Khanday F A, Shah K A, Mittal S, KaushikB K 2020 ECS J. Solid State Sci. Technol. 9 115031Google Scholar

    [7]

    Gao N, Lu G Y, Jiang Q 2017 J. Mater. Chem. C 5 627Google Scholar

    [8]

    Guo Z X, Furuya S, Iwata J, Oshiyama A 2013 Phys. Rev. B 87 235435Google Scholar

    [9]

    Lin C L, Kim B K, Ahn Y H, Kim J J, Choi M S, Bae M H, Kang K, Lim J S, López R, KimN 2013 Phys. Rev. Lett. 110 076803Google Scholar

    [10]

    Stephan R, Hanf M C, Sonnet P 2015 J. Phys.:Condens. Matter 27 015002Google Scholar

    [11]

    Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, LayG L 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [12]

    Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507Google Scholar

    [13]

    Enriquez H, Vizzini S, Kara A, Lalmi B, Oughaddou H 2012 J. Phys.:Condens. Matter 24 314211Google Scholar

    [14]

    Resta A, Leoni T, Barth C, Ranguis A, Becker C, Bruhn T, Vogt P, Lay GL 2013 Sci. Rep. 3 2399Google Scholar

    [15]

    Kawahara K, Shirasawa T, Arafune R, Lin C L, Takahashi T, Kawai M, Takagi N 2014 Surf. Sci. 623 25Google Scholar

    [16]

    Ryuichi A, Liang L C, Kazuaki K, Noriyuki T, Emi M, Kim Y, Noriaki T, Maki K 2013 Surf. Sci. 608 297Google Scholar

    [17]

    Liu ZL, Wang MX, Liu C H, Jia JF, Vogt P, Quaresima C, Ottaviani C, Olivieri B, DePadova P, Lay G L 2014 APL Mat. 2 092513Google Scholar

    [18]

    RahmanMS, Nakagawa T, MizunoS 2015 Jpn. J. Appl. Phys. 54 015502Google Scholar

    [19]

    Jamgotchian H, Ealet B, Colignon Y, Maradj H, Hoarau JY, Biberian JP, AufrayB 2015 J. Phys. Condens. Matter 27 395002Google Scholar

    [20]

    Curcella A, Bernard R, Borensztein Y, Resta A, Lazzeri M, Prévot G 2016 Phys. Rev. B 94 165438Google Scholar

    [21]

    Curcella A, Bernard R, Borensztein Y, Resta A, Lazzeri M, Prévot G 2019 Phys. Rev. B 99 205411Google Scholar

    [22]

    Pawlak R, Drechsel C, D’Astolfo P, Kisiel M, Meyer E, Cerda J I 2020 PNAS 117 228Google Scholar

    [23]

    Krull C, Robles R, Mugarza A, GambardellaP 2013 Nat. Mater. 12 337Google Scholar

    [24]

    Liu L W, Yang K, Jiang Y H, Song B Q, Xiao W D, Song S R, Du S X, Ouyang M, Hofer WA, Neto AHC, Gao HJ 2015 Phys. Rev. Lett. 114 126601Google Scholar

    [25]

    Wintterlin J, BocquetM L 2009 Surf. Sci. 603 1841Google Scholar

    [26]

    Li Z Y, Li B, Yang J L, Hou J G 2010 Acc. Chem. Res. 43 954Google Scholar

    [27]

    Mugarza A, Robles R, Krull C, Korytr R, Lorente N, GambardellaP 2012 Phys. Rev. B 85 155437Google Scholar

  • [1] 杨硕颖, 殷嘉鑫. 时间反演对称性破缺的笼目超导输运现象. 物理学报, 2024, 73(15): 150301. doi: 10.7498/aps.73.20240917
    [2] 包健, 张文禄, 李定. 高能量电子激发比压阿尔芬本征模的全域模拟研究. 物理学报, 2023, 72(21): 215216. doi: 10.7498/aps.72.20230794
    [3] 杨子豪, 刘刚, 吴木生, 石晶, 欧阳楚英, 杨慎博, 徐波. 氢空位簇调控锗烷的电子结构和分子掺杂. 物理学报, 2023, 72(12): 127101. doi: 10.7498/aps.72.20230170
    [4] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [5] 丁俊, 文黎巍, 李瑞雪, 张英. 铁电极化翻转对硅烯异质结中电子性质的调控. 物理学报, 2022, 71(17): 177303. doi: 10.7498/aps.71.20220815
    [6] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [7] 肖美霞, 冷浩, 宋海洋, 王磊, 姚婷珍, 何成. 有机分子吸附和衬底调控锗烯的电子结构. 物理学报, 2021, 70(6): 063101. doi: 10.7498/aps.70.20201657
    [8] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [9] 陈建, 熊康林, 冯加贵. 单层硅烯表面的CoPc分子吸附研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211607
    [10] 崔兴倩, 刘乾, 范志强, 张振华. 氧气分子吸附对单蒽分子器件自旋输运性质调控. 物理学报, 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [11] 轩书科. 钾钡共掺菲分子结构和电子特性的第一性原理研究. 物理学报, 2017, 66(23): 237401. doi: 10.7498/aps.66.237401
    [12] 杨硕, 程鹏, 陈岚, 吴克辉. 硅烯的化学功能化. 物理学报, 2017, 66(21): 216805. doi: 10.7498/aps.66.216805
    [13] 张弦, 郭志新, 曹觉先, 肖思国, 丁建文. GaAs(111)表面硅烯、锗烯的几何及电子性质研究. 物理学报, 2015, 64(18): 186101. doi: 10.7498/aps.64.186101
    [14] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究. 物理学报, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [15] 安兴涛, 刁淑萌. 门电压控制的硅烯量子线中电子输运性质. 物理学报, 2014, 63(18): 187304. doi: 10.7498/aps.63.187304
    [16] 李细莲, 刘刚, 杜桃园, 赵晶, 吴木生, 欧阳楚英, 徐波. 应力对硅烯上锂吸附的影响. 物理学报, 2014, 63(21): 217101. doi: 10.7498/aps.63.217101
    [17] 秦军瑞, 陈书明, 张超, 陈建军, 梁斌, 刘必慰. A-Z-A型石墨烯场效应晶体管吸附效应的第一性原理研究. 物理学报, 2012, 61(2): 023102. doi: 10.7498/aps.61.023102
    [18] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [19] 刘君民, 孙立忠, 陈元平, 张凯旺, 袁辉球, 钟建新. 镧铱硅电子结构与成键机理的第一性原理研究. 物理学报, 2009, 58(11): 7826-7832. doi: 10.7498/aps.58.7826
    [20] 赵巍, 汪家道, 刘峰斌, 陈大融. H2O分子在Fe(100), Fe(110), Fe(111)表面吸附的第一性原理研究. 物理学报, 2009, 58(5): 3352-3358. doi: 10.7498/aps.58.3352
计量
  • 文章访问数:  4321
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-30
  • 修回日期:  2021-09-08
  • 上网日期:  2022-02-12
  • 刊出日期:  2022-02-20

/

返回文章
返回