搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaAs(111)表面硅烯、锗烯的几何及电子性质研究

张弦 郭志新 曹觉先 肖思国 丁建文

引用本文:
Citation:

GaAs(111)表面硅烯、锗烯的几何及电子性质研究

张弦, 郭志新, 曹觉先, 肖思国, 丁建文

Atomic and electronic structures of silicene and germanene on GaAs(111)

Zhang Xian, Guo Zhi-Xin, Cao Jue-Xian, Xiao Si-Guo, Ding Jian-Wen
PDF
导出引用
  • 基于密度泛函理论的第一性原理计算方法, 系统研究了硅烯、锗烯在GaAs(111) 表面的几何及电子结构. 研究发现, 硅烯、锗烯均可在As-中断和Ga-中断的GaAs(111) 表面稳定存在, 并呈现蜂窝状六角几何构型. 形成能计算结果证明了其实验制备的可行性. 同时发现硅烯、锗烯与GaAs表面存在共价键作用, 这破坏了其Dirac电子性质. 进一步探索了利用氢插层恢复硅烯、锗烯Dirac电子性质的方法. 发现该方法可使As-中断面上硅烯、锗烯的Dirac电子性质得到很好恢复, 而在Ga-中断面上的效果不够理想. 此外, 基于原子轨道成键和杂化理论揭示了GaAs表面硅烯、锗烯能带变化的物理机理. 研究结果为硅烯、锗烯在半导体基底上的制备及应用奠定了理论基础.
    By using first-principles method in the density-functional theory, we clarify the atomic and electronic structures of silicene and germanene on 1×1 GaAs(111). We find stable structures for silicene and germanene on both the As-terminated and Ga-terminated GaAs surfaces. The structures of silicene and germanene are similar to those of the free-standing ones, which present a honeycomb-hexagonal geometry. The cohesive energies of silicene and germanene on both As and Ga sides of GaAs surfaces are comparable to those of their bulk structures and/or those on Ag(111) substrates which have been widely observed in experiment, showing the possibility of synthesizing them on both sides of GaAs surfaces in experiment. The corresponding binding energies are in a range of 0.56-1.37 eV per Si (Ge) atom, 10 times larger than the usual van der Waals interaction, showing the covalent interaction between silicene (germanene) and GaAs surfaces. The band structure calculations show that such a covalent interaction induces the absence of Dirac electrons for silicene and germanene on GaAs surfaces. We then explore the method of recovering the Dirac electrons by using hydrogen (H) intercalation. It is found that the intercalated H atoms are chemically bonded to GaAs surface, and the silicene (germanene) shifts upward distance from GaAs surface increasing from 2.50-2.58 Å to 3.49-3.86 Å, where a covalent van-der-Waals interaction transition happens between silicene (germanene) and GaAs surface. Moreover, the distances between silicene (germanene) and H atoms are 30% and 8% larger than the atomic-radius sum of Si (Ge) and H on As-terminated and Ga-terminated GaAs surfaces, respectively. This shows that the interaction between silicene (germanene) and H on the As-terminated GaAs surface is obviously weaker than the typical covalent interaction, while on the Ga-terminated GaAs surface, it is comparable to the typical covalent interaction. This difference is induced by the difference in electronegativity between As and Ga atoms. We further find that the H intercalation recovers the Dirac electrons well on the As-terminated GaAs(111) due to the weaker Si (Ge)-H interaction, while it does not on the Ga-terminated GaAs(111) due to the stronger Si (Ge)-H interaction. The results are confirmed by performing calculations for silicene (germanene) on larger GaAs(111) surfaces, i.e., the 3×3 GaAs surface. Our study provides the theoretical basis for the preparation and application of silicene and germanene on semiconductor surfaces.
      通信作者: 郭志新, zxguo08@gmail.com
    • 基金项目: 国家自然科学基金(批准号: 11204259, 11374252, 11474245, 51372214)、湖南省自然科学基金(批准号: 2015JJ6106)、新世纪优秀人才计划(批准号: NCET-12-0722)和教育部长江学者和创新团队计划(IRT13093)资助的课题.
      Corresponding author: Guo Zhi-Xin, zxguo08@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204259, 11374252, 11474245, 51372214), the Natural Science Foundation of Hunan Province, China (Grant No. 2015JJ6106), the Program for New Century Excellent Talents in University, China (Grant No. NCET-12-0722) and the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13093).
    [1]

    Slonczewski J C, Weiss P R 1958 Phys. Rev. 109 272

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M L, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [3]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Son Y W, Cohen M L, Louie S G 2007 Nature 444 347

    [5]

    Okada S, Oshiyama A 2001 Phys. Rev. Lett. 87 146803

    [6]

    Geim A K, Novoselov K S 2007 Nat. Mat. 6 183

    [7]

    Cahangirov S, Topsakal M, Aktrk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804

    [8]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802

    [9]

    Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501

    [10]

    Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y, Wu K 2012 Phys. Rev. Lett. 109 056804

    [11]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501

    [12]

    Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A, Gao H J 2013 Nano Lett. 13 685

    [13]

    Li L, Lu S, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S, Gao H J 2014 Adv. Mater. 26 4820

    [14]

    Dàvila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002

    [15]

    Guo Z X, Furuya S, Iwata J I, Oshiyama A 2013 J. Phys. Soc. Jpn. 82 063714

    [16]

    Guo Z X, Furuya S, Iwata J I, Oshiyama A 2013 Phys. Rev. B 87 235435

    [17]

    Guo Z X, Oshiyama A 2014 Phys. Rev. B 89 155418

    [18]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [19]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [20]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [21]

    Klimeš J, Bowler D R, Michaelides A 2011 Phys. Rev. B 83 195131

    [22]

    Woolf D A, Westwood D I, Williams R H 1993 Appl. Phys. Lett. 62 1370

    [23]

    Clementi E, Raimondi D L, Reinhardt W P 1963 J. Chem. Phys. 38 2686

    [24]

    Riedl C, Coletti C, Iwasaki T, Zakharov A A, Starke U 2009 Phys. Rev. Lett. 103 246804

  • [1]

    Slonczewski J C, Weiss P R 1958 Phys. Rev. 109 272

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M L, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [3]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Son Y W, Cohen M L, Louie S G 2007 Nature 444 347

    [5]

    Okada S, Oshiyama A 2001 Phys. Rev. Lett. 87 146803

    [6]

    Geim A K, Novoselov K S 2007 Nat. Mat. 6 183

    [7]

    Cahangirov S, Topsakal M, Aktrk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804

    [8]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802

    [9]

    Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501

    [10]

    Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y, Wu K 2012 Phys. Rev. Lett. 109 056804

    [11]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501

    [12]

    Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A, Gao H J 2013 Nano Lett. 13 685

    [13]

    Li L, Lu S, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S, Gao H J 2014 Adv. Mater. 26 4820

    [14]

    Dàvila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002

    [15]

    Guo Z X, Furuya S, Iwata J I, Oshiyama A 2013 J. Phys. Soc. Jpn. 82 063714

    [16]

    Guo Z X, Furuya S, Iwata J I, Oshiyama A 2013 Phys. Rev. B 87 235435

    [17]

    Guo Z X, Oshiyama A 2014 Phys. Rev. B 89 155418

    [18]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [19]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [20]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [21]

    Klimeš J, Bowler D R, Michaelides A 2011 Phys. Rev. B 83 195131

    [22]

    Woolf D A, Westwood D I, Williams R H 1993 Appl. Phys. Lett. 62 1370

    [23]

    Clementi E, Raimondi D L, Reinhardt W P 1963 J. Chem. Phys. 38 2686

    [24]

    Riedl C, Coletti C, Iwasaki T, Zakharov A A, Starke U 2009 Phys. Rev. Lett. 103 246804

  • [1] 郑军, 马力, 李春雷, 袁瑞旸, 郭亚涛, 付旭日. 自旋偏压驱动的硅烯和锗烯光控晶体管. 物理学报, 2022, 71(19): 198502. doi: 10.7498/aps.71.20221047
    [2] 丁俊, 文黎巍, 李瑞雪, 张英. 铁电极化翻转对硅烯异质结中电子性质的调控. 物理学报, 2022, 71(17): 177303. doi: 10.7498/aps.71.20220815
    [3] 陈建, 熊康林, 冯加贵. 单层硅烯表面的CoPc分子吸附研究. 物理学报, 2022, 71(4): 040501. doi: 10.7498/aps.71.20211607
    [4] 陈建, 熊康林, 冯加贵. 单层硅烯表面的CoPc分子吸附研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211607
    [5] 肖美霞, 冷浩, 宋海洋, 王磊, 姚婷珍, 何成. 有机分子吸附和衬底调控锗烯的电子结构. 物理学报, 2021, 70(6): 063101. doi: 10.7498/aps.70.20201657
    [6] 相阳, 郑军, 李春雷, 郭永. 局域交换场和电场调控的锗烯纳米带自旋过滤效应. 物理学报, 2019, 68(18): 187302. doi: 10.7498/aps.68.20190817
    [7] 肖廷辉, 于洋, 李志远. 石墨烯-硅基混合光子集成电路. 物理学报, 2017, 66(21): 217802. doi: 10.7498/aps.66.217802
    [8] 杨硕, 程鹏, 陈岚, 吴克辉. 硅烯的化学功能化. 物理学报, 2017, 66(21): 216805. doi: 10.7498/aps.66.216805
    [9] 秦志辉. 类石墨烯锗烯研究进展. 物理学报, 2017, 66(21): 216802. doi: 10.7498/aps.66.216802
    [10] 武红, 李峰. GeH/层间弱相互作用调控锗烯电子结构的机制. 物理学报, 2016, 65(9): 096801. doi: 10.7498/aps.65.096801
    [11] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯负极材料的粗粒模型. 物理学报, 2015, 64(14): 143101. doi: 10.7498/aps.64.143101
    [12] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究. 物理学报, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [13] 高潭华. 表面氢化双层硅烯的结构和电子性质. 物理学报, 2015, 64(7): 076801. doi: 10.7498/aps.64.076801
    [14] 计青山, 郝鸿雁, 张存喜, 王瑞. 硅烯中受电场调控的体能隙和朗道能级. 物理学报, 2015, 64(8): 087302. doi: 10.7498/aps.64.087302
    [15] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究. 物理学报, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [16] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [17] 李细莲, 刘刚, 杜桃园, 赵晶, 吴木生, 欧阳楚英, 徐波. 应力对硅烯上锂吸附的影响. 物理学报, 2014, 63(21): 217101. doi: 10.7498/aps.63.217101
    [18] 安兴涛, 刁淑萌. 门电压控制的硅烯量子线中电子输运性质. 物理学报, 2014, 63(18): 187304. doi: 10.7498/aps.63.187304
    [19] 吴江滨, 张昕, 谭平恒, 冯志红, 李佳. 旋转双层石墨烯的电子结构. 物理学报, 2013, 62(15): 157302. doi: 10.7498/aps.62.157302
    [20] 康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 不同极性6H-SiC表面石墨烯的制备及其电子结构的研究. 物理学报, 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
计量
  • 文章访问数:  6557
  • PDF下载量:  483
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-03
  • 修回日期:  2015-04-27
  • 刊出日期:  2015-09-05

/

返回文章
返回