搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢空位簇调控锗烷的电子结构和分子掺杂

杨子豪 刘刚 吴木生 石晶 欧阳楚英 杨慎博 徐波

引用本文:
Citation:

氢空位簇调控锗烷的电子结构和分子掺杂

杨子豪, 刘刚, 吴木生, 石晶, 欧阳楚英, 杨慎博, 徐波

Electronic structures and molecular doping of germanane regulated by hydrogen vacancy clusters

Yang Zi-Hao, Liu Gang, Wu Mu-Sheng, Shi Jing, Ouyang Chu-Ying, Yang Shen-Bo, Xu Bo
PDF
HTML
导出引用
  • 锗烷因其合适的带隙、较高的电子迁移速率、较好的环境稳定性、较小的电噪声和超薄的几何结构, 有望取代现有硅基或锗基材料成为下一代半导体器件的理想载体. 基于密度泛函理论和非平衡格林函数的第一性原理方法, 研究了不同构型和浓度的氢空位簇对锗烷电子结构及锗烷中四硫富瓦烯(tetrathiafulvalene, TTF)分子掺杂性能的影响. 计算结果表明, 不同构型氢空位簇的引入可诱导GermananeDehydrogenated-xH (GD–xH) 体系产生不同性质的磁性, 且磁矩大小亦与Lieb定理的预测结果相符, 并能在GD-xH (x = 1, 4, 6) 体系自旋向下的能带结构中实现由缺陷态引起的类p型半导体掺杂效应, 其电子激发所需的能量则会随着体系脱氢浓度的升高而不断降低. 吸附TTF分子后, G/TTF和GD-xH/TTF (x = 1, 2, 6)体系表现出分子掺杂效应, 且GD-xH/TTF (x = 1, 6)体系因分子轨道与缺陷态的杂化作用, 可在自旋向上与自旋向下的能带结构中形成不同的掺杂类型. 进一步的量子输运计算还表明, Armchair和Zigzag类型的锗烷基器件表现为明显的各向同性, 且TTF分子吸附所导致的载流子掺杂可大幅提高其I-V特性.
    Germanane is expected to substitute for existing silicon-based or germanium-based material. Germanane is regarded as an ideal candidate for next-generation semiconductor material due to its suitable band gap, high electron mobility, better environmental stability, small electrical noise and ultrathin geometry. In this work, the effects of different configuration and concentration of hydrogen vacancy cluster on the electronic properties of germanane and its molecular doping are systematically investigated through the first-principles method based on density functional theory and none-quilibrium Green’s function. The results show that the hydrogen vacancy clusters with different configurations can induce magnetism with different characteristics in GermananeDehydrogenated-xH (GD-xH) system, and the magnetic moments are consistent with the predictions of Lieb’s theorem. Moreover, the p-type-liked doping effects caused by defective state under GD-xH (x = 1, 4, 6) systems can be realized in their spin-down band structures. The corresponding energy values for exciting electron would gradually decrease with the increase of the concentration of hydrogen vacancy clusters under different configurations. After adsorbing tetrathiafulvalene (TTF) molecules, G/TTF and GD-xH/TTF (x = 1, 2, 6) systems exhibit molecular doping characteristics induced by the TTF molecules. More importantly, for GD-xH/TTF (x = 1, 6) system, the different molecular doping types can be introduced in spin-up and spin-down band structures due to the hybridization composed of molecular orbitals and defective states under spin polarization. Further calculations of their transport properties indicate that germanane-based device with Armchair and Zigzag configurations both exhibit intensive isotropy, and the performance of I-V characteristics can be dramatically enhanced owing to the carrier doping by TTF adsorption.
      通信作者: 刘刚, 721lg@jxnu.edu.cn ; 徐波, bxu4@mail.ustc.edu.cn
    • 基金项目: 江西省自然科学基金(批准号: 20224ACB201010, 20212BAB201017)、国家自然科学基金(批准号: 12064014, 12064015, 51962010, 12174162, 12164019)和鸿之微项目资助的课题.
      Corresponding author: Liu Gang, 721lg@jxnu.edu.cn ; Xu Bo, bxu4@mail.ustc.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20224ACB201010, 20212BAB201017), the National Natural Science Foundation of China (Grant Nos. 12064014, 12064015, 51962010, 12174162, 12164019), and the Program of HZWTECH (HZWTECH-PROP).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [4]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491Google Scholar

    [5]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414Google Scholar

    [6]

    Sahoo N G, Esteves R J, Punetha V D, Pestov D, Arachchige I U, McLeskey J T 2016 Appl. Phys. Lett. 109 023507Google Scholar

    [7]

    Madhushankar B N, Kaverzin A, Giousis T, Potsi G, Gournis D, Rudolf P, Blake G R, van der Wal C H, van Wees B J 2017 2D Mater. 4 021009Google Scholar

    [8]

    Hu L, Zhao J, Yang J 2014 J. Phys. Condens. Matter. 26 335302Google Scholar

    [9]

    Li Y, Chen Z 2014 J. Phys. Chem. C 118 1148Google Scholar

    [10]

    Ma Y, Dai Y, Lu Y B, Huang B 2014 J. Mater. Chem. C 2 1125Google Scholar

    [11]

    Zhou Y, Liu K, Xiao H, Xiang X, Nie J, Li S, Huang H, Zu X 2015 J. Mater. Chem. C 3 3128Google Scholar

    [12]

    Zhao J, Zeng H 2016 RSC Adv. 6 28298Google Scholar

    [13]

    Chandiramouli R 2017 J. Mol. Liq. 242 571Google Scholar

    [14]

    Kannan V, Ganesan V, Vijayakumar V 2022 Comput. Theor. Chem. 1214 113799Google Scholar

    [15]

    Vajda S, Pellin M J, Greeley J P, Marshall C L, Curtiss L A, Ballentine G A, Elam J W, Catillon-Mucherie S, Redfern P C, Mehmood F, Zapol P 2009 Nat. Mater. 8 213Google Scholar

    [16]

    Zhou S, Zhao J 2016 J. Phys. Chem. C 120 21691Google Scholar

    [17]

    Wang X, Liu G, Liu R F, Luo W W, Wu M S, Sun B Z, Lei X L, Ouyang C Y, Xu B 2018 Nanotechnology 29 465202Google Scholar

    [18]

    Cui Z, Luo Y, Yu J, Xu Y 2021 Physica E 134 114873Google Scholar

    [19]

    Yan H, Ma W 2022 Adv. Funct. Mater. 32 2111351Google Scholar

    [20]

    Qin Z, Gao C, Wong W W H, Riede M K, Wang T, Dong H, Zhen Y, Hu W 2020 J. Mater. Chem. C 8 14996Google Scholar

    [21]

    Ye J P, Liu G, Han Y, Luo W W, Sun B Z, Lei X L, Xu B, Ouyang C Y, Zhang H L 2019 Phys. Chem. Chem. Phys. 21 20287Google Scholar

    [22]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [23]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [25]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [26]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [27]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [28]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [29]

    Yang W, Cao Y, Han J, Lin X, Wang X, Wei G, Lv C, Bournel A, Zhao W 2021 Nanoscale 13 862Google Scholar

    [30]

    Ali M, Pi X, Liu Y, Yang D 2017 AIP Adv. 7 045308Google Scholar

    [31]

    Kuklin A V, Begunovich L V, Gao L, Zhang H, Ågren H 2021 Phys. Rev. B 104 134109Google Scholar

    [32]

    黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎 2019 物理学报 68 246301Google Scholar

    Huang B Q, Zhou T G, Wu D X, Zhang Z F, Li B K 2019 Acta Phys. Sin. 68 246301Google Scholar

    [33]

    Hongzhiwei Technology 2021 Device Studio (Version 2021B) (Shanghai)

    [34]

    武红, 李峰 2016 物理学报 65 096801Google Scholar

    Wu H, Li F 2016 Acta Phys. Sin. 65 096801Google Scholar

    [35]

    Liu L, Ji Y, Liu L 2019 Bull. Mater. Sci. 42 157Google Scholar

    [36]

    Lieb E H 1989 Phys. Rev. Lett. 62 1201Google Scholar

    [37]

    Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [38]

    Kiriya D, Tosun M, Zhao P, Kang J S, Javey A 2014 J. Am. Chem. Soc. 136 7853Google Scholar

  • 图 1  锗烷中典型的4种氢空位簇构型俯视图(蓝色和绿色小球分别代表Ge和H原子) (a) GD-1H; (b) GD-2H; (c) GD-4H; (d) GD-6H

    Fig. 1.  Top view of four typical configurations for different hydrogen vacancy clusters in germanane: (a) GD-1H; (b) GD-2H; (c) GD-4H; (d) GD-6H. Blue and green spherules represent Ge and H atoms, respectively.

    图 2  (a)—(e) 锗烷和不同氢空位簇锗烷 GD-xH (x = 1, 2, 4, 6)体系对应的能带结构; (f) Eg, Ep和体系磁矩随脱氢浓度的变化

    Fig. 2.  (a)–(e) Corresponding band structures of germanane and different hydrogen vacancy clusters GD-xH (x = 1, 2, 4, 6) systems; (f) Eg, Ep and magnetic moment as a function of dehydrogenation concentration.

    图 3  G/TTF和GD\text{-}xH/TTF (x = 1, 2, 4, 6)体系最佳吸附构型的俯视图和侧视图 (a) G/TTF, H2-site; (b) GD-1H/TTF, V2-side; (c) GD-2H/TTF, B2-side; (d) GD-4H/TTF, H2-side; (e) GD-6H/TTF, V2-side. 蓝色、绿色、红色和棕色小球分别代表Ge, H, S和C原子

    Fig. 3.  Top and side views of optimal adsorption configuration of G/TTF and GD–xH/TTF (x = 1, 2, 4, 6) systems : (a) G/TTF, H2-site; (b) GD-1H/TTF, V2-side; (c) GD-2H/TTF, B2-side; (d) GD-4H/TTF, H2-side; (e) GD-6H/TTF, V2-side. Blue, green, red and brown spheres represent Ge, H, S, and C atoms, respectively.

    图 4  (a) G/TTF和 (b)—(e) GD-xH/TTF (x = 1, 2, 4, 6)体系对应能带结构, 其中绿色和粉色平带分别代表由TTF分子贡献和脱氢处的Ge原子贡献, 橙色平带代表由TTF分子和脱氢处Ge原子共同贡献; (f) Eg, En, Ep和体系净磁矩随脱氢浓度的变化

    Fig. 4.  Corresponding band structures of (a) G/TTF and (b)–(e) GD-xH/TTF (x = 1, 2, 4, 6) systems, where green and pink flat bands represent contribution of TTF molecule and Ge atoms at dehydrogenation, respectively, orange flat bands represent the joint contribution of TTF molecule and Ge atom at dehydrogenation; (f) Eg, En, Ep and magnetic moment as a function of dehydrogenation concentration.

    图 5  (a) G/TTF和(b)—(e) GD-xH/TTF (x = 1, 2, 4, 6)体系的HOMO和LUMO, 其中等值面设为 0.004 e3

    Fig. 5.  HOMO and LUMO in the (a) G/TTF and (b)–(e) GD-xH/TTF (x = 1, 2, 4, 6) systems. Isosurface level is set to 0.004 e3.

    图 6  (a)—(e) G/TTF和GD-xH/TTF (x = 1, 2, 4, 6)体系的差分电荷密度俯视和侧视图, 其中青色和黄色分别代表失电荷和得电荷; 等值面设为0.0002 e3 (a)和 0.001 e3 (b)—(e)

    Fig. 6.  (a)–(e) Top and side views of differential charge density for G/TTF and GD–xH/TTF (x = 1, 2, 4, 6) systems. Cyan and yellow color represents deficiency and accumulation of electron, respectively. Isosurface is set to 0.0002 e3 and 0.001 e3 in panel (a) and (b)–(e), respectively.

    图 7  基于 Armchair (a)和Zigzag(b)构型的锗烷基纳米器件模型

    Fig. 7.  Germanane-based nanodevice model with Armchair (a) and Zigzag (b) type configurations.

    图 8  Armchair (a)和Zigzag(b)类型的锗烷纳米器件模型的电子透射谱和态密度图, 其中蓝色实线表示透射谱曲线, 绿色虚线表示态密度

    Fig. 8.  Electron transmission spectra and DOS along Armchair (a) and Zigzag (b) directions in germanane-based nanodevice model. Blue implementation represents the transmission spectral curve, and the green dashed line represents the DOS.

    图 9  本征锗烷(a)、G/TTF(b)和GD-xH/TTF (x = 1, 2) (c), (d)基器件的I-V特性曲线

    Fig. 9.  I-V characteristic curves for devices based on intrinsic germanane (a), G/TTF (b) and GD-xH/TTF (x = 1, 2) (c), (d).

    表 1  本征锗烷和脱氢锗烷的磁矩、Ge—H键长、Ge—Ge键长以及Ge原子的平均褶皱高度

    Table 1.  Magnetic moment, Ge—H bond length, Ge—Ge bond length and the average height of the Ge atoms in different configurations of dehydrogenated germanane.

    参数GermananeGD-1HGD-2HGD-4HGD-6H
    $ \mu /{\mu }_{{\rm{B}}} $01.00002.0000
    ${d}_{ {\rm{G} }{\rm{e} }\text{—}{\rm{H} } }/$Å1.5611.561—1.5681.562—1.5671.562—1.5671.564—1.570
    ${d}_{ {\rm{G} }{\rm{e} }\text{—}{\rm{G} }{\rm{e} } }$/Å2.4672.465—2.4872.345—2.4932.430—2.4922.415—2.492
    Δ0.7250.7260.7330.7340.735
    下载: 导出CSV

    表 2  G/TTF和GD-xH/TTF (x = 1, 2, 4, 6)体系最佳吸附构型所对应的吸附能, 净磁矩, 结构参数和电荷转移量

    Table 2.  Adsorption energy, magnetic moment, structural parameters and charge transfer of optimal adsorption configuration of G/TTF and GD-xH/TTF (x = 1, 2, 4, 6) systems.

    参数G/TTFGD-1H/TTFGD-2H/TTFGD-4H/TTFGD-6H/TTF
    $ {E}_{{\rm{a}}{\rm{d}}} $/eV0.5830.8890.7660.8951.230
    $ \mu $/$ {\mu }_{{\rm{B}}} $01.00002.0000
    d4.5924.2944.3073.7373.527
    ${d}_{ {\rm{G} }{\rm{e} }\text{—}{\rm{G} }{\rm{e} } }$/Å2.468—2.4702.467—2.5232.384—2.5012.469—2.5062.423—2.517
    ${d}_{ {\rm{G} }{\rm{e} }\text{—}{\rm{H} } }$/Å1.560—1.5681.563—1.5711.563—1.5711.563—1.5771.563—1.570
    Δ0.7350.7380.7340.7390.736
    Q/e0.0290.3920.1950.2300.200
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [4]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491Google Scholar

    [5]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414Google Scholar

    [6]

    Sahoo N G, Esteves R J, Punetha V D, Pestov D, Arachchige I U, McLeskey J T 2016 Appl. Phys. Lett. 109 023507Google Scholar

    [7]

    Madhushankar B N, Kaverzin A, Giousis T, Potsi G, Gournis D, Rudolf P, Blake G R, van der Wal C H, van Wees B J 2017 2D Mater. 4 021009Google Scholar

    [8]

    Hu L, Zhao J, Yang J 2014 J. Phys. Condens. Matter. 26 335302Google Scholar

    [9]

    Li Y, Chen Z 2014 J. Phys. Chem. C 118 1148Google Scholar

    [10]

    Ma Y, Dai Y, Lu Y B, Huang B 2014 J. Mater. Chem. C 2 1125Google Scholar

    [11]

    Zhou Y, Liu K, Xiao H, Xiang X, Nie J, Li S, Huang H, Zu X 2015 J. Mater. Chem. C 3 3128Google Scholar

    [12]

    Zhao J, Zeng H 2016 RSC Adv. 6 28298Google Scholar

    [13]

    Chandiramouli R 2017 J. Mol. Liq. 242 571Google Scholar

    [14]

    Kannan V, Ganesan V, Vijayakumar V 2022 Comput. Theor. Chem. 1214 113799Google Scholar

    [15]

    Vajda S, Pellin M J, Greeley J P, Marshall C L, Curtiss L A, Ballentine G A, Elam J W, Catillon-Mucherie S, Redfern P C, Mehmood F, Zapol P 2009 Nat. Mater. 8 213Google Scholar

    [16]

    Zhou S, Zhao J 2016 J. Phys. Chem. C 120 21691Google Scholar

    [17]

    Wang X, Liu G, Liu R F, Luo W W, Wu M S, Sun B Z, Lei X L, Ouyang C Y, Xu B 2018 Nanotechnology 29 465202Google Scholar

    [18]

    Cui Z, Luo Y, Yu J, Xu Y 2021 Physica E 134 114873Google Scholar

    [19]

    Yan H, Ma W 2022 Adv. Funct. Mater. 32 2111351Google Scholar

    [20]

    Qin Z, Gao C, Wong W W H, Riede M K, Wang T, Dong H, Zhen Y, Hu W 2020 J. Mater. Chem. C 8 14996Google Scholar

    [21]

    Ye J P, Liu G, Han Y, Luo W W, Sun B Z, Lei X L, Xu B, Ouyang C Y, Zhang H L 2019 Phys. Chem. Chem. Phys. 21 20287Google Scholar

    [22]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [23]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [25]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [26]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [27]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [28]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [29]

    Yang W, Cao Y, Han J, Lin X, Wang X, Wei G, Lv C, Bournel A, Zhao W 2021 Nanoscale 13 862Google Scholar

    [30]

    Ali M, Pi X, Liu Y, Yang D 2017 AIP Adv. 7 045308Google Scholar

    [31]

    Kuklin A V, Begunovich L V, Gao L, Zhang H, Ågren H 2021 Phys. Rev. B 104 134109Google Scholar

    [32]

    黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎 2019 物理学报 68 246301Google Scholar

    Huang B Q, Zhou T G, Wu D X, Zhang Z F, Li B K 2019 Acta Phys. Sin. 68 246301Google Scholar

    [33]

    Hongzhiwei Technology 2021 Device Studio (Version 2021B) (Shanghai)

    [34]

    武红, 李峰 2016 物理学报 65 096801Google Scholar

    Wu H, Li F 2016 Acta Phys. Sin. 65 096801Google Scholar

    [35]

    Liu L, Ji Y, Liu L 2019 Bull. Mater. Sci. 42 157Google Scholar

    [36]

    Lieb E H 1989 Phys. Rev. Lett. 62 1201Google Scholar

    [37]

    Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [38]

    Kiriya D, Tosun M, Zhao P, Kang J S, Javey A 2014 J. Am. Chem. Soc. 136 7853Google Scholar

  • [1] 陈建, 熊康林, 冯加贵. 单层硅烯表面的CoPc分子吸附研究. 物理学报, 2022, 71(4): 040501. doi: 10.7498/aps.71.20211607
    [2] 张小超, 管美画, 张启瑞, 张长明, 李瑞, 刘建新, 王雅文, 樊彩梅. 单原子Pt吸附于不同原子暴露终端BiOBr{001}面的第一性原理研究. 物理学报, 2021, 70(8): 087101. doi: 10.7498/aps.70.20201572
    [3] 陈建, 熊康林, 冯加贵. 单层硅烯表面的CoPc分子吸附研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211607
    [4] 张硕, 龙连春, 刘静毅, 杨洋. 分子动力学方法研究缺陷对铁单质薄膜磁致伸缩的影响. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211177
    [5] 崔兴倩, 刘乾, 范志强, 张振华. 氧气分子吸附对单蒽分子器件自旋输运性质调控. 物理学报, 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [6] 左博敏, 袁健美, 冯志, 毛宇亮. 应力调控下二维硒化锗五种同分异构体的第一性原理研究. 物理学报, 2019, 68(11): 113103. doi: 10.7498/aps.68.20182266
    [7] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [8] 武红, 李峰. GeH/层间弱相互作用调控锗烯电子结构的机制. 物理学报, 2016, 65(9): 096801. doi: 10.7498/aps.65.096801
    [9] 张秀荣, 王杨杨, 李维军, 袁爱华. Wn (n= 16)团簇吸附CO的密度泛函研究. 物理学报, 2013, 62(5): 053603. doi: 10.7498/aps.62.053603
    [10] 阮文, 谢安东, 余晓光, 伍冬兰. NaBn(n=19)团簇的几何结构和电子性质. 物理学报, 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [11] 秦军瑞, 陈书明, 张超, 陈建军, 梁斌, 刘必慰. A-Z-A型石墨烯场效应晶体管吸附效应的第一性原理研究. 物理学报, 2012, 61(2): 023102. doi: 10.7498/aps.61.023102
    [12] 李建华, 曾祥华, 季正华, 胡益培, 陈宝, 范玉佩. ZnS掺Ag与Zn空位缺陷的电子结构和光学性质. 物理学报, 2011, 60(5): 057101. doi: 10.7498/aps.60.057101
    [13] 刘柏年, 马颖, 周益春. 四方相BaTiO3缺陷性质的第一性原理计算. 物理学报, 2010, 59(5): 3377-3383. doi: 10.7498/aps.59.3377
    [14] 周凯, 李辉, 王柱. 正电子湮没谱和光致发光谱研究掺锌GaSb质子辐照缺陷. 物理学报, 2010, 59(7): 5116-5121. doi: 10.7498/aps.59.5116
    [15] 赵巍, 汪家道, 刘峰斌, 陈大融. H2O分子在Fe(100), Fe(110), Fe(111)表面吸附的第一性原理研究. 物理学报, 2009, 58(5): 3352-3358. doi: 10.7498/aps.58.3352
    [16] 王 博, 赵有文, 董志远, 邓爱红, 苗杉杉, 杨 俊. 高温退火后非掺杂磷化铟材料的电子辐照缺陷. 物理学报, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [17] 郝小鹏, 王宝义, 于润升, 魏 龙. 锆离子注入锆-4合金缺陷的慢正电子研究. 物理学报, 2007, 56(11): 6543-6546. doi: 10.7498/aps.56.6543
    [18] 金年庆, 滕玉永, 顾 斌, 曾祥华. 稀有气体原子注入缺陷性纳米碳管的分子动力学模拟. 物理学报, 2007, 56(3): 1494-1498. doi: 10.7498/aps.56.1494
    [19] 陈志权, 河裾厚男. He离子注入ZnO中缺陷形成的慢正电子束研究. 物理学报, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [20] 李鹏飞, 颜晓红, 王如志. 缺陷对准周期磁超晶格输运性质的影响. 物理学报, 2002, 51(9): 2139-2143. doi: 10.7498/aps.51.2139
计量
  • 文章访问数:  1463
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-10
  • 修回日期:  2023-03-14
  • 上网日期:  2023-04-24
  • 刊出日期:  2023-06-20

/

返回文章
返回