-
月面任务将面临月球车车轮与月尘摩擦充放电风险, 初步的理论研究表明金属材质的车轮可能会充电至–5000 V量级, 放电脉冲电流可达0.1 A量级, 严重威胁航天员生命安全和器件电路的正常工作. 本文采用地面实验手段研究了真空、太阳风等离子体环境下月球车车轮摩擦充放电风险. 研究结果表明, 真空环境下, 直径为136 mm的铝合金月球车车轮以0.003 m/s在月尘层上行驶时会快速充电至几百伏正电位, 车轮行驶距离至约20 m, 电位为550 V时即发生放电击穿, 此时捕捉到的放电电流脉冲幅值可达1.5 A, 脉冲持续时间约100 ns; 增加摩擦频率充电速率明显增加, 放电更频繁的发生; 在模拟的太阳风等离子体环境下, 车轮以0.003 m/s行驶时环境和摩擦共同作用使充电电位为负, 平衡后电位约–830 V左右, 且放电更加频繁, 行驶至8.5 m时即发生放电击穿, 放电电流脉冲幅值可达0.3 A, 脉冲持续时间100 ns. 该放电脉冲对线性电路造成了电磁干扰, 导致信号的异常输出. 本研究表明月球车摩擦充放电风险较高, 需在后续工程任务中关注并进一步评估其危害程度.
With China’s lunar exploration program steadily advancing from the landmark orbiting missions of Chang’e-1 to the historic sample-return feats of Chang'e-5 and the groundbreaking far-side landing of Chang’e-4, China has entered a critical phase of deepening lunar exploration, including preparations for crewed lunar missions. Among these ambitious endeavors, identifying and mitigating potential operational risks is crucial to ensuring the success of these ambitious efforts. This work focuses on a critical hazard unique to China’s lunar surface exploration efforts: the triboelectric charging and discharging phenomenon between lunar rover wheels and lunar dust, which has a significant impact on astronaut safety and the reliability of onboard electronic systems. Lunar surface missions will face the risk of triboelectric charging and discharging resulting from friction between lunar rover wheels and lunar dust. Preliminary theoretical studies indicate that metal wheels may become charged to a level of approximately –5000 V, with discharge pulse currents reaching an order of magnitude of 0.1 A, posing a severe threat to astronaut safety and the normal operation of device circuits. This paper employs ground-based experimental methods to investigate the triboelectric charging and discharging risks of lunar rover wheels in vacuum and simulated solar wind plasma environments. The research findings are given below. In a vacuum environment, when an aluminum alloy lunar rover wheel (136 mm in diameter) travels on a lunar dust layer at a speed of 0.003 m/s, it rapidly charges to a positive potential of several hundred volts. Discharge breakdown occurs when the wheel travels approximately 20 m and reaches a potential of 550 V. At this point, the captured discharge current pulse amplitude can reach 1.5 A, with a pulse duration of about 100 ns. Increasing the friction frequency significantly accelerates the charging rate and leads to more frequent discharges. In a simulated solar wind plasma environment, when the wheel travels at 0.003 m/s, the combined effect of the environment and friction results in a negative charging potential. After reaching equilibrium, the potential stabilizes at approximately –830 V, and discharges occur more frequently than in a vacuum environment. Discharge breakdown takes place when the wheel travels just 8.5 m, with the discharge current pulse amplitude reaching up to 0.3 A and a pulse duration of 100 ns. These discharge pulses cause electromagnetic interference to linear circuits, leading to abnormal output of voltage signals in subsequent modes. The abnormal signals have an amplitude on the order of 10 V and a duration of 29 ms. This study confirms that the risk of triboelectric charging and discharging in lunar rovers is relatively high. Although theoretical models predict that the lunar roving vehicle (LRV) would experience rapid dissipation of triboelectric charges (with no charging/discharging risk) when operating at 0.03 m/s, the experiments show that even at a slow speed of 0.003 m/s, the wheels still accumulate charges and experience frequent discharge breakdowns. The amplitude of discharge pulse can reach the level of 1 ampere, causing significant electromagnetic interference to nearby circuits. Clearly, theoretical models underestimate the risk of triboelectric charging and discharging in lunar surface environments. It is recommended that future engineering tasks pay close attention to this issue and further evaluate the extent of its hazards. -
Keywords:
- charging and discharging /
- friction /
- lunar rover /
- lunar environment
-
图 6 太阳风环境下铝材料与月尘摩擦放电脉冲电流波形(6×10–3 Pa, 20 ℃; 电子密度约108 cm–3量级, 电子能量约4 eV, 离子能量约1 eV)
Fig. 6. Triboelectric discharge pulse current waveform of aluminum material rubbed against lunar dust under solar wind environment (6×10–3 Pa, 20 ℃; electron density ~108 cm–3, electron energy ~4 eV, ion energy ~1 eV).
-
[1] Freeman J W, Ibrahim M 1975 Moon 14 103
Google Scholar
[2] Halekas J S, Mitchell D L, Lin R P, Frey S, Hood L L, Acuna M H, Binder A B 2002 Geophys. Res. Lett. 29 1435
[3] Halekas J S, Delory G T, Lin R P, Stubbs T J, Farrell W M 2008 J. Geophys. Res. Lett. 113 A09102
[4] Halekas J S, Delory G T, Brain D A, Lin R P, Fillingim M O, Lee C O, Mewaldt R A, Stubbs T J, Farrell W M, Hudson M K 2007 Geophys. Res. Lett. 34 346
[5] Halekas J S, Delory G T, Lin R P, Stubbs T J, Farrell W M 2009 J. Geophys. Res. : Space Phys. 114 A5
[6] Liu Y, Par J, Hill E, Kihm K D, Taylor L A 2006 Proceedings of the 10th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments and Second NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration Houston, TX, USA, March 5–8 2006 pp1–6
[7] Alvarez R 1975 Proceedings of the 6th Lunar Science Conference Houston, USA, March 17–21 1975 pp3187–3197
[8] 王赤, 范全林 2025 科技导报 43 32
Wang C, Fan Q L 2025 Sci. Technol. Rev. 43 32
[9] 王赤, 林杨挺, 裴照宇, 邹永廖, 徐琳, 程惠红, 任杰, 于晟 2022 中国科学基金 36 830
Wang C, Lin Y T, Pei Z Y, Zou Y L, Xu L, Cheng H H, Ren J, Yu S 2022 Chin. Sci. Fund. 36 830
[10] Farrell W M, Halekas J S, Horányi M, Killen R M, Georgiou C, Smith J R, Bahadori M, Conrad P E, Collier M R, Case A, Drobnes J, Ergun R C, Fatemi S, Fujimoto Y, Holmström M, Hanson D M, Kivelson G Y, Mauk B H, Nakamura M N, Nordheim S K, Saito Y, Poppe A R, Reme H, Xu W, Yoshioka S 2023 Rev. Mineral. Geochem. 89 563
Google Scholar
[11] Horányi M, Szalay J R, Wang X 2024 Phil. Trans. R. Soc. London, Ser. A 382 20230075
[12] Sathyan S, Bhatt M, Chowdhury M, Gläser P, Misra D, Srivastava N, Narendranath S, Sajinkumar K S, Bhardwaj A 2024 Icarus 412 115988
Google Scholar
[13] Jackson T L, Farrell W M, Killen R M, Delort G T 2011 J. Spacecraft Rockets 48 700
Google Scholar
[14] Jackson T L, Farrell W M, Zimmerman M I 2015 Adv. Space Res. 55 1710
Google Scholar
[15] Narendra R, Sudheer M L, Pande D C 2013 IEEE Electromagn. Compat. Mag. 2 47
Google Scholar
[16] 张卫国, 姜景山, 刘和光, 张晓辉, 张德海, 李涤徽, 胥传东 2009 中国科学 (D 辑: 地球科学) 39 1059
Zhang W G, Jiang J S, Liu H G, Zhang X H, Zhang D H, Li D H, Xu C D 2009 Sci. China Ser. D-Earth Sci. 39 1059
[17] Farrell W M, Stubbs T J, Halekas J S, Killen R M, Delory G T, Collier M R, Vondrak R R 2010 J. Geophys. Res. 115 E03004
[18] Xie L, Zhang X, Li L, Zhou B, Zhang Y, Yan Q, Feng Y Y, Guo D W, Yu S R 2020 Geophys. Res. Lett. 47 e2020GL089593
Google Scholar
[19] 张森森, 王世杰, 李雄耀 2012 第十届全国月球科学与比较行星学陨石学与天体化学学术研讨会会议论文集 (贵阳: 中国科学院地球化学研究所月球与行星科学研究中心;中国科学院研究大学) 2012 第43—45页
Zhang S S, Wang S J, Li X Y 2012 Proceedings of the 10th National Symposium on Lunar Science, Comparative Planetology, Meteoritics and Astrochemistry Guiyang, China, April 15–16 2012 pp43–45
[20] Pagan M J H, Xu W, Horányi M, Kharchenko V, Hansen L, Chane M, van de Kamp M, Yakovlev A M, Krivtsov P, Alexeev D 2024 Phys. Rev. Lett. 133 115301
Google Scholar
[21] Elena O, Hsiang-Wen H, Xu W, Drobnes J, Horányi M 2024 Icarus 421 116213
Google Scholar
[22] Horányi M, Walch B, Robertson S, et al. 1998 J. Geophys. Res. 103 8575
Google Scholar
[23] Horányi M, Walch B, Robertson S 1995 Geophys. Res. Lett. 22 2079
Google Scholar
[24] Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag) p13
[25] Chen R, Chen L, Li S, Zhu X, Han J W 2019 IEEE Trans. Device Mater. Reliab. 19 733
Google Scholar
[26] Chen R, Chen L, Han J W, Wang X, Liang Y N, Ma Y Q, Shangguan S P 2021 Electronics 10 802
Google Scholar
[27] Chen R, Han J W, Zheng H S, Yu Y T, Shangguan S P, Feng G Q, Ma Y Q 2015 Chin. Phys. B 24 046103
Google Scholar
[28] 张成铭, 徐晓英, 舒晓榕, 周钰雄 2020 电子测量与仪器学报 34 103
Zhang C M, Xu X Y, Shu X R, Zhou Y X 2020 J. Electron. Meas. Instrum. 34 103
[29] 袁润杰, 陈睿, 韩建伟, 夏清, 王璇, 陈钱, 梁亚楠 2024 北京航空航天大学学报 60 1
Yuan R J, Chen R, Han J W, Xia Q, Wang X, Chen Q, Liang Y N 2024 J. Beijing Univ. Aeronaut. Astronaut. 60 1
[30] Desch S J, Cuzzi J N 2000 Icarus 143 87
Google Scholar
计量
- 文章访问数: 301
- PDF下载量: 4
- 被引次数: 0








下载: