搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

月面环境月球车摩擦充放电风险研究

夏清 李梦谣 蔡明辉 唐程雄 张尊 杨涛 许亮亮 贾鑫禹

引用本文:
Citation:

月面环境月球车摩擦充放电风险研究

夏清, 李梦谣, 蔡明辉, 唐程雄, 张尊, 杨涛, 许亮亮, 贾鑫禹

Study on risk of triboelectric charging and discharging of lunar rovers in lunar surface environment

XIA Qing, LI Mengyao, CAI Minghui, TANG Chengxiong, ZHANG Zun, YANG Tao, XU Liangliang, JIA Xinyu
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 月面任务将面临月球车车轮与月尘摩擦充放电风险, 初步的理论研究表明金属材质的车轮可能会充电至–5000 V量级, 放电脉冲电流可达0.1 A量级, 严重威胁航天员生命安全和器件电路的正常工作. 本文采用地面实验手段研究了真空、太阳风等离子体环境下月球车车轮摩擦充放电风险. 研究结果表明, 真空环境下, 直径为136 mm的铝合金月球车车轮以0.003 m/s在月尘层上行驶时会快速充电至几百伏正电位, 车轮行驶距离至约20 m, 电位为550 V时即发生放电击穿, 此时捕捉到的放电电流脉冲幅值可达1.5 A, 脉冲持续时间约100 ns; 增加摩擦频率充电速率明显增加, 放电更频繁的发生; 在模拟的太阳风等离子体环境下, 车轮以0.003 m/s行驶时环境和摩擦共同作用使充电电位为负, 平衡后电位约–830 V左右, 且放电更加频繁, 行驶至8.5 m时即发生放电击穿, 放电电流脉冲幅值可达0.3 A, 脉冲持续时间100 ns. 该放电脉冲对线性电路造成了电磁干扰, 导致信号的异常输出. 本研究表明月球车摩擦充放电风险较高, 需在后续工程任务中关注并进一步评估其危害程度.
    With China’s lunar exploration program steadily advancing from the landmark orbiting missions of Chang’e-1 to the historic sample-return feats of Chang'e-5 and the groundbreaking far-side landing of Chang’e-4, China has entered a critical phase of deepening lunar exploration, including preparations for crewed lunar missions. Among these ambitious endeavors, identifying and mitigating potential operational risks is crucial to ensuring the success of these ambitious efforts. This work focuses on a critical hazard unique to China’s lunar surface exploration efforts: the triboelectric charging and discharging phenomenon between lunar rover wheels and lunar dust, which has a significant impact on astronaut safety and the reliability of onboard electronic systems.Lunar surface missions will face the risk of triboelectric charging and discharging resulting from friction between lunar rover wheels and lunar dust. Preliminary theoretical studies indicate that metal wheels may become charged to a level of approximately –5000 V, with discharge pulse currents reaching an order of magnitude of 0.1 A, posing a severe threat to astronaut safety and the normal operation of device circuits.This paper employs ground-based experimental methods to investigate the triboelectric charging and discharging risks of lunar rover wheels in vacuum and simulated solar wind plasma environments. The research findings are given below.In a vacuum environment, when an aluminum alloy lunar rover wheel (136 mm in diameter) travels on a lunar dust layer at a speed of 0.003 m/s, it rapidly charges to a positive potential of several hundred volts. Discharge breakdown occurs when the wheel travels approximately 20 m and reaches a potential of 550 V. At this point, the captured discharge current pulse amplitude can reach 1.5 A, with a pulse duration of about 100 ns. Increasing the friction frequency significantly accelerates the charging rate and leads to more frequent discharges.In a simulated solar wind plasma environment, when the wheel travels at 0.003 m/s, the combined effect of the environment and friction results in a negative charging potential. After reaching equilibrium, the potential stabilizes at approximately –830 V, and discharges occur more frequently than in a vacuum environment. Discharge breakdown takes place when the wheel travels just 8.5 m, with the discharge current pulse amplitude reaching up to 0.3 A and a pulse duration of 100 ns.These discharge pulses cause electromagnetic interference to linear circuits, leading to abnormal output of voltage signals in subsequent modes. The abnormal signals have an amplitude on the order of 10 V and a duration of 29 ms.This study confirms that the risk of triboelectric charging and discharging in lunar rovers is relatively high. Although theoretical models predict that the lunar roving vehicle (LRV) would experience rapid dissipation of triboelectric charges (with no charging/discharging risk) when operating at 0.03 m/s, the experiments show that even at a slow speed of 0.003 m/s, the wheels still accumulate charges and experience frequent discharge breakdowns. The amplitude of discharge pulse can reach the level of 1 ampere, causing significant electromagnetic interference to nearby circuits. Clearly, theoretical models underestimate the risk of triboelectric charging and discharging in lunar surface environments. It is recommended that future engineering tasks pay close attention to this issue and further evaluate the extent of its hazards.
  • 图 1  材料与月尘摩擦充电试验装置图

    Fig. 1.  Schematic diagram of the triboelectric charging test device for materials and lunar dust.

    图 2  在20 ℃条件下, 真空和大气环境中铝材料摩擦充电电位随摩擦次数的变化(紫色方框代表此次摩擦后探测到放电信号)

    Fig. 2.  Curve of triboelectric charging potential of aluminum material vs. friction cycles under vacuum and atmospheric environments at 20 ℃.

    图 3  铝材料摩擦放电脉冲电流波形

    Fig. 3.  Triboelectric discharge pulse current waveform of aluminum material.

    图 4  不同摩擦周期铝材料摩擦充电特性(真空, 20 ℃)

    Fig. 4.  Triboelectric charging characteristics of aluminum material under different friction cycles (vacuum environment, 20 ℃).

    图 5  太阳风环境下铝材料摩擦充电电位随摩擦次数的变化(真空, 20 ℃, 其中紫色方框代表此次摩擦后发生了放电)

    Fig. 5.  Curve of triboelectric charging potential of aluminum material vs. friction cycles under solar wind environment (Vacuum, 20 ℃).

    图 6  太阳风环境下铝材料与月尘摩擦放电脉冲电流波形(6×10–3 Pa, 20 ℃; 电子密度约108 cm–3量级, 电子能量约4 eV, 离子能量约1 eV)

    Fig. 6.  Triboelectric discharge pulse current waveform of aluminum material rubbed against lunar dust under solar wind environment (6×10–3 Pa, 20 ℃; electron density ~108 cm–3, electron energy ~4 eV, ion energy ~1 eV).

    图 7  星用线性电路结构图[30]

    Fig. 7.  Schematic diagram of space-used linear circuit[30].

    图 8  线性电路输出信号

    Fig. 8.  Output signal of linear circuits.

    表 1  月面环境地面模拟参数

    Table 1.  Ground simulation parameters of lunar surface environment.

    环境要素 环境参数
    真实情况 地面试验
    真空度/Pa 10–14—10–10 10–4
    太阳风等离子体 密度: 107/m3;
    温度: 10 eV
    电子密度: 约108/cm3;
    电子温度: 约10 eV;
    离子温度: 约2.5 eV[22,23]
    月尘 月尘 CLDS-1型模拟月尘
    月球车轮材质 铝合金 铝合金
    月球车运动速率
    /(m·s–1)
    0.014—0.056 0.003
    下载: 导出CSV
  • [1]

    Freeman J W, Ibrahim M 1975 Moon 14 103Google Scholar

    [2]

    Halekas J S, Mitchell D L, Lin R P, Frey S, Hood L L, Acuna M H, Binder A B 2002 Geophys. Res. Lett. 29 1435

    [3]

    Halekas J S, Delory G T, Lin R P, Stubbs T J, Farrell W M 2008 J. Geophys. Res. Lett. 113 A09102

    [4]

    Halekas J S, Delory G T, Brain D A, Lin R P, Fillingim M O, Lee C O, Mewaldt R A, Stubbs T J, Farrell W M, Hudson M K 2007 Geophys. Res. Lett. 34 346

    [5]

    Halekas J S, Delory G T, Lin R P, Stubbs T J, Farrell W M 2009 J. Geophys. Res. : Space Phys. 114 A5

    [6]

    Liu Y, Par J, Hill E, Kihm K D, Taylor L A 2006 Proceedings of the 10th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments and Second NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration Houston, TX, USA, March 5–8 2006 pp1–6

    [7]

    Alvarez R 1975 Proceedings of the 6th Lunar Science Conference Houston, USA, March 17–21 1975 pp3187–3197

    [8]

    王赤, 范全林 2025 科技导报 43 32

    Wang C, Fan Q L 2025 Sci. Technol. Rev. 43 32

    [9]

    王赤, 林杨挺, 裴照宇, 邹永廖, 徐琳, 程惠红, 任杰, 于晟 2022 中国科学基金 36 830

    Wang C, Lin Y T, Pei Z Y, Zou Y L, Xu L, Cheng H H, Ren J, Yu S 2022 Chin. Sci. Fund. 36 830

    [10]

    Farrell W M, Halekas J S, Horányi M, Killen R M, Georgiou C, Smith J R, Bahadori M, Conrad P E, Collier M R, Case A, Drobnes J, Ergun R C, Fatemi S, Fujimoto Y, Holmström M, Hanson D M, Kivelson G Y, Mauk B H, Nakamura M N, Nordheim S K, Saito Y, Poppe A R, Reme H, Xu W, Yoshioka S 2023 Rev. Mineral. Geochem. 89 563Google Scholar

    [11]

    Horányi M, Szalay J R, Wang X 2024 Phil. Trans. R. Soc. London, Ser. A 382 20230075

    [12]

    Sathyan S, Bhatt M, Chowdhury M, Gläser P, Misra D, Srivastava N, Narendranath S, Sajinkumar K S, Bhardwaj A 2024 Icarus 412 115988Google Scholar

    [13]

    Jackson T L, Farrell W M, Killen R M, Delort G T 2011 J. Spacecraft Rockets 48 700Google Scholar

    [14]

    Jackson T L, Farrell W M, Zimmerman M I 2015 Adv. Space Res. 55 1710Google Scholar

    [15]

    Narendra R, Sudheer M L, Pande D C 2013 IEEE Electromagn. Compat. Mag. 2 47Google Scholar

    [16]

    张卫国, 姜景山, 刘和光, 张晓辉, 张德海, 李涤徽, 胥传东 2009 中国科学 (D 辑: 地球科学) 39 1059

    Zhang W G, Jiang J S, Liu H G, Zhang X H, Zhang D H, Li D H, Xu C D 2009 Sci. China Ser. D-Earth Sci. 39 1059

    [17]

    Farrell W M, Stubbs T J, Halekas J S, Killen R M, Delory G T, Collier M R, Vondrak R R 2010 J. Geophys. Res. 115 E03004

    [18]

    Xie L, Zhang X, Li L, Zhou B, Zhang Y, Yan Q, Feng Y Y, Guo D W, Yu S R 2020 Geophys. Res. Lett. 47 e2020GL089593Google Scholar

    [19]

    张森森, 王世杰, 李雄耀 2012 第十届全国月球科学与比较行星学陨石学与天体化学学术研讨会会议论文集 (贵阳: 中国科学院地球化学研究所月球与行星科学研究中心;中国科学院研究大学) 2012 第43—45页

    Zhang S S, Wang S J, Li X Y 2012 Proceedings of the 10th National Symposium on Lunar Science, Comparative Planetology, Meteoritics and Astrochemistry Guiyang, China, April 15–16 2012 pp43–45

    [20]

    Pagan M J H, Xu W, Horányi M, Kharchenko V, Hansen L, Chane M, van de Kamp M, Yakovlev A M, Krivtsov P, Alexeev D 2024 Phys. Rev. Lett. 133 115301Google Scholar

    [21]

    Elena O, Hsiang-Wen H, Xu W, Drobnes J, Horányi M 2024 Icarus 421 116213Google Scholar

    [22]

    Horányi M, Walch B, Robertson S, et al. 1998 J. Geophys. Res. 103 8575Google Scholar

    [23]

    Horányi M, Walch B, Robertson S 1995 Geophys. Res. Lett. 22 2079Google Scholar

    [24]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag) p13

    [25]

    Chen R, Chen L, Li S, Zhu X, Han J W 2019 IEEE Trans. Device Mater. Reliab. 19 733Google Scholar

    [26]

    Chen R, Chen L, Han J W, Wang X, Liang Y N, Ma Y Q, Shangguan S P 2021 Electronics 10 802Google Scholar

    [27]

    Chen R, Han J W, Zheng H S, Yu Y T, Shangguan S P, Feng G Q, Ma Y Q 2015 Chin. Phys. B 24 046103Google Scholar

    [28]

    张成铭, 徐晓英, 舒晓榕, 周钰雄 2020 电子测量与仪器学报 34 103

    Zhang C M, Xu X Y, Shu X R, Zhou Y X 2020 J. Electron. Meas. Instrum. 34 103

    [29]

    袁润杰, 陈睿, 韩建伟, 夏清, 王璇, 陈钱, 梁亚楠 2024 北京航空航天大学学报 60 1

    Yuan R J, Chen R, Han J W, Xia Q, Wang X, Chen Q, Liang Y N 2024 J. Beijing Univ. Aeronaut. Astronaut. 60 1

    [30]

    Desch S J, Cuzzi J N 2000 Icarus 143 87Google Scholar

  • [1] 李梦谣, 夏清, 蔡明辉, 杨涛, 许亮亮, 贾鑫禹, 韩建伟. 月球南极尘埃等离子体环境特性. 物理学报, doi: 10.7498/aps.73.20240599
    [2] 段浩炀, 杨柯欣, 曹义刚. 不同力程排斥相互作用胶体粒子系统的摩擦特性. 物理学报, doi: 10.7498/aps.73.20231701
    [3] 张改, 谢海妹, 宋海滨, 李晓菲, 张茜, 亢一澜. 不同充放电模式影响还原氧化石墨烯电极储锂性能的实验分析. 物理学报, doi: 10.7498/aps.71.20211405
    [4] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.71.20212309
    [5] 陈康, 沈煜年. 软体机器人用多孔聚合物水凝胶的摩擦接触非线性行为. 物理学报, doi: 10.7498/aps.70.20202134
    [6] 李鹏程, 唐重阳, 程亮, 胡永明, 肖湘衡, 陈万平. TiO2纳米粉在水中通过摩擦还原CO2. 物理学报, doi: 10.7498/aps.70.20210210
    [7] 陈勇, 李瑞. 纳米尺度硼烯与石墨烯的相互作用. 物理学报, doi: 10.7498/aps.68.20190692
    [8] 潘登, 刘长鑫, 张泽洋, 高玉金, 郝秀红. 速度对聚四氟乙烯摩擦系数影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.68.20190495
    [9] 王世伟, 朱朋哲, 李瑞. 界面羟基对碳纳米管摩擦行为和能量耗散的影响. 物理学报, doi: 10.7498/aps.67.20180311
    [10] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.66.046101
    [11] 汤依伟, 艾亮, 程昀, 王安安, 李书国, 贾明. 锂离子动力电池高倍率充放电过程中弛豫行为的仿真. 物理学报, doi: 10.7498/aps.65.058201
    [12] 李瑞, 孙丹海. 缺陷对碳纳米管摩擦与运动行为的影响. 物理学报, doi: 10.7498/aps.63.056101
    [13] 贾汝娟, 王苍龙, 杨阳, 苟学强, 陈建敏, 段文山. 二维Frenkel-Kontorova模型中六角对称结构的摩擦现象. 物理学报, doi: 10.7498/aps.62.068104
    [14] 万进, 田煜, 周铭, 张向军, 孟永钢. 载荷对壁虎刚毛束的摩擦各向异性特性影响的实验研究. 物理学报, doi: 10.7498/aps.61.016202
    [15] 杨阳, 王苍龙, 段文山, 石玉仁, 陈建敏. 基底势函数的无序性对静摩擦力的影响. 物理学报, doi: 10.7498/aps.61.130501
    [16] 兰惠清, 徐藏. 掺硅类金刚石薄膜摩擦过程的分子动力学模拟. 物理学报, doi: 10.7498/aps.61.133101
    [17] 李瑞, 胡元中, 王慧. Si表面间水平碳纳米管束的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.60.016106
    [18] 龚中良, 黄 平. 界面摩擦过程非连续能量耗散机理研究. 物理学报, doi: 10.7498/aps.57.2358
    [19] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响. 物理学报, doi: 10.7498/aps.55.5318
    [20] 许中明, 黄 平. 摩擦微观能量耗散机理的复合振子模型研究. 物理学报, doi: 10.7498/aps.55.2427
计量
  • 文章访问数:  301
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-02
  • 修回日期:  2025-08-29
  • 上网日期:  2025-09-17

/

返回文章
返回