搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子动力电池高倍率充放电过程中弛豫行为的仿真

汤依伟 艾亮 程昀 王安安 李书国 贾明

引用本文:
Citation:

锂离子动力电池高倍率充放电过程中弛豫行为的仿真

汤依伟, 艾亮, 程昀, 王安安, 李书国, 贾明

Relaxation behavior simulation of power lithium-ion battery in high-rate charging-discharging process

Tang Yi-Wei, Ai Liang, Cheng Yun, Wang An-An, Li Shu-Guo, Jia Ming
PDF
导出引用
  • 基于电化学热耦合模型研究了动力锂离子电池高倍率充放电过程中的弛豫行为, 分析对比了不同充放电机制对电池弛豫行为的影响. 研究发现: 充放电过程中, 欧姆极化是造成电压骤变的主要原因; 而恒流-恒压的充电模式能够缓慢消除欧姆极化, 避免电池电压的骤变; 利用恒流恒压对电池进行充电能够充进更多的电量, 有利于电池性能的完全发挥; 固相锂离子浓度的弛豫时间比液相锂离子浓度的弛豫时间长, 并且在放电后期, 固相扩散的特征时间与液相扩散特征时间的比值不断增大, 固相扩散造成的极化在整个放电过程不可忽略.
    The relaxation behaviors of a power lithium-ion battery significantly affect its performance, and these properties are greatly affected by temperature. This study presents a validated electrochemical-thermal model battery model covering the conservations of charge, mass, and energy and the electrochemical reaction kinetics, and considering the effect of heat on electrochemical performance of a battery. Using this battery model, the relaxation behavior of power lithium-ion battery in high-rate charging-discharging process and the effect of difference among charge-discharge systems are investigated. It is found that ohmic polarization is the main reason for voltage change in charging-discharging process. Constant-current-constant-voltage charging mode can effectively remit ohmic polarization and then avoid changing the voltage rapidly. In the shelving process after constant-current-constant-voltage charging, voltage change is smaller and the time for it to take to reach open circuit potential is shorter than in the shelving process after constant-current charging. In charging-discharging process, the values of polarization at positive and negative electrode are almost the same. Power lithium-ion battery can be charged into more energy by constant-current-constant-voltage charging modes, meaning that it is beneficial to battery performance. Because active material particles in electrodes have certain sizes, in discharging process, there is some gradient between the surface and center of solid particle, and the electrodes each have a certain thickness, different place of electrode has a different lithium-ion concentration. In the shelving process after discharging, there is no outer current, so the gradient of lithium-ion concentration disappears due to the effect of diffusion process. The relaxation time of lithium-ion concentration in solid phase is longer than in liquid phase. The ratio between characteristic time of solid diffusion and that of liquid diffusion increases constantly near the end of the discharge, thus the polarization due to solid diffusion cannot be neglected in the whole discharging process.
      通信作者: 贾明, csulightmetals11@163.com
    • 基金项目: 国家自然科学基金(批准号: 51204211, 51222403)、中南大学基础研究基金(批准号: 2014zzts029)和工信部工业转型升级强基工程专项(批准号: 0714-EMTC02-5271/6)资助的课题.
      Corresponding author: Jia Ming, csulightmetals11@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51204211, 51222403), the Fundamental Research Funds for Central Universities of Central South University, China (Grant No. 2014zzts029), and the Special Foundation for Industrial Upgrading Transformation and Strengthen the Foundation of Ministry of Industry and Information Technology, China (Grant No. 0714-EMTC02-5271/6).
    [1]

    Chen Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 物理学报 64 210202]

    [2]

    Scrosati B, Garche J 2010 J. Power Sources 195 2419

    [3]

    Hannan M A, Azidin F A, Mohamed A 2014 Renew. Sust. Energ. Rev. 29 135

    [4]

    Newman J, Tiedemann W 1975 AICHE J 21 25

    [5]

    Doyle M, Newman J 1995 Electrochim. Acta 40 2191

    [6]

    Li J, Cheng Y, Jia M, Tang Y W, Lin Y, Zhang Z A, Liu Y X 2014 J. Power Sources 255 130

    [7]

    Huang L, Li J Y 2015 Acta Phys. Sin. 64 108202 (in Chinese) [黄亮, 李建远 2015 物理学报 64 108202]

    [8]

    Tang Y W, Jia M, Li J, Lai Y Q, Cheng Y, Liu Y X 2014 J. Electrochem. Soc. 161 E3021

    [9]

    Tang Y W, Jia M, Chen Y, Zhang K, Zhang H L, Li J 2013 Acta Phys. Sin. 62 158201 (in Chinese) [汤依伟, 贾明, 程昀, 张凯, 张红亮, 李劼 2013 物理学报 62 158201]

    [10]

    Du S L, Jia M, Cheng Y, Tang Y W, Zhang H L, Ai L H, Zhang K, Lai Y Q 2015 Int. J. Them. Sci. 89 327

    [11]

    Dai Y, Cai L, White R E 2014 J. Power Sources 247 365

    [12]

    Zheng H, Liu X, Wei M 2015 Chin. Phys. B24 098801

    [13]

    Dai Y, Cai L, White R E 2013 J. Electorchem. Soc. 160 A182

    [14]

    Kang J Q, Conlisk A T, Rizzoni G 2014 J. Solid State Electrochem 18 2425

    [15]

    Nyman A, Zavalis T G, Elger R, Behm, M, Lindbergh, G 2010 J. Electrochem. Soc. 157 A1236

    [16]

    Safari M, Delacourt C 2011 J. Electrochem. Soc. 158 A562

    [17]

    Fuller T F, Doyle M, Newman J 1994 J. Electrochem. Soc. 141 982

    [18]

    Bernardi D M, Go J Y 2011 J. Power Sources 196 412

    [19]

    Reichert M, Andre D, Rösmann A, Janssen P, Bremes H G, Sauer D U, Passerini S, Winter M 2013 J. Power Sources 239 45

    [20]

    Smith K, Wang C Y 2006 J. Power Sources 160 662

    [21]

    Jin W R, Lu S G, Pang J 2011 Chin. J. Inorg. Chem. 27 1675

    [22]

    Gerver R E, Meyers J P 2011 J. Electrochem. Soc. 158 A835

    [23]

    Tang Y W, Jia M, Li J, Lai Y Q, Cheng Y, Liu Y X 2014 J. Electrochem. Soc. 161 E3021

    [24]

    Ramadass P, Haran B, Gomadam P M, White R E, Popov B N 2004 J. Electrochem. Soc. 151 A196

    [25]

    Srinivasan V, Wang C Y 2003 J. Electrochem. Soc. 150 A98

    [26]

    Bernardi D, Pawlikowski E, Newman J 1985 J. Electrochem. Soc. 132 5

    [27]

    Valoen L O, Reimers J N 2005 J. Electorchem. Soc. 152 A882

  • [1]

    Chen Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 物理学报 64 210202]

    [2]

    Scrosati B, Garche J 2010 J. Power Sources 195 2419

    [3]

    Hannan M A, Azidin F A, Mohamed A 2014 Renew. Sust. Energ. Rev. 29 135

    [4]

    Newman J, Tiedemann W 1975 AICHE J 21 25

    [5]

    Doyle M, Newman J 1995 Electrochim. Acta 40 2191

    [6]

    Li J, Cheng Y, Jia M, Tang Y W, Lin Y, Zhang Z A, Liu Y X 2014 J. Power Sources 255 130

    [7]

    Huang L, Li J Y 2015 Acta Phys. Sin. 64 108202 (in Chinese) [黄亮, 李建远 2015 物理学报 64 108202]

    [8]

    Tang Y W, Jia M, Li J, Lai Y Q, Cheng Y, Liu Y X 2014 J. Electrochem. Soc. 161 E3021

    [9]

    Tang Y W, Jia M, Chen Y, Zhang K, Zhang H L, Li J 2013 Acta Phys. Sin. 62 158201 (in Chinese) [汤依伟, 贾明, 程昀, 张凯, 张红亮, 李劼 2013 物理学报 62 158201]

    [10]

    Du S L, Jia M, Cheng Y, Tang Y W, Zhang H L, Ai L H, Zhang K, Lai Y Q 2015 Int. J. Them. Sci. 89 327

    [11]

    Dai Y, Cai L, White R E 2014 J. Power Sources 247 365

    [12]

    Zheng H, Liu X, Wei M 2015 Chin. Phys. B24 098801

    [13]

    Dai Y, Cai L, White R E 2013 J. Electorchem. Soc. 160 A182

    [14]

    Kang J Q, Conlisk A T, Rizzoni G 2014 J. Solid State Electrochem 18 2425

    [15]

    Nyman A, Zavalis T G, Elger R, Behm, M, Lindbergh, G 2010 J. Electrochem. Soc. 157 A1236

    [16]

    Safari M, Delacourt C 2011 J. Electrochem. Soc. 158 A562

    [17]

    Fuller T F, Doyle M, Newman J 1994 J. Electrochem. Soc. 141 982

    [18]

    Bernardi D M, Go J Y 2011 J. Power Sources 196 412

    [19]

    Reichert M, Andre D, Rösmann A, Janssen P, Bremes H G, Sauer D U, Passerini S, Winter M 2013 J. Power Sources 239 45

    [20]

    Smith K, Wang C Y 2006 J. Power Sources 160 662

    [21]

    Jin W R, Lu S G, Pang J 2011 Chin. J. Inorg. Chem. 27 1675

    [22]

    Gerver R E, Meyers J P 2011 J. Electrochem. Soc. 158 A835

    [23]

    Tang Y W, Jia M, Li J, Lai Y Q, Cheng Y, Liu Y X 2014 J. Electrochem. Soc. 161 E3021

    [24]

    Ramadass P, Haran B, Gomadam P M, White R E, Popov B N 2004 J. Electrochem. Soc. 151 A196

    [25]

    Srinivasan V, Wang C Y 2003 J. Electrochem. Soc. 150 A98

    [26]

    Bernardi D, Pawlikowski E, Newman J 1985 J. Electrochem. Soc. 132 5

    [27]

    Valoen L O, Reimers J N 2005 J. Electorchem. Soc. 152 A882

  • [1] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [2] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211619
    [3] 陈云天, 王经纬, 陈伟锦, 徐竞. 互易波导模式耦合理论. 物理学报, 2020, 69(15): 154206. doi: 10.7498/aps.69.20200194
    [4] 金鑫鑫, 金峰, 刘宁, 孙其诚. 准静态颗粒介质的弹性势能弛豫分析. 物理学报, 2016, 65(9): 096102. doi: 10.7498/aps.65.096102
    [5] 孙其诚, 刘传奇, 周公旦. 颗粒介质弹性的弛豫. 物理学报, 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [6] 赵娜, 刘建设, 李铁夫, 陈炜. 超导量子比特的耦合研究进展. 物理学报, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [7] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究. 物理学报, 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [8] 陈醒基, 田涛涛, 周振玮, 胡一博, 唐国宁. 通过被动介质耦合的两螺旋波的同步. 物理学报, 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [9] 杨岳彬, 左文龙, 保延翔, 刘树郁, 李龙飞, 张进修, 熊小敏. 力学共振吸收谱探测耦合振动模式. 物理学报, 2012, 61(20): 200509. doi: 10.7498/aps.61.200509
    [10] 李群宏, 闫玉龙, 杨丹. 耦合电路系统的分岔研究. 物理学报, 2012, 61(20): 200505. doi: 10.7498/aps.61.200505
    [11] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究. 物理学报, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [12] 陈章耀, 毕勤胜. Jerk系统耦合的分岔和混沌行为. 物理学报, 2010, 59(11): 7669-7678. doi: 10.7498/aps.59.7669
    [13] 卢敏, 许卫兵, 刘维清, 侯春菊, 刘志勇. 银纳米杆高温熔化断裂弛豫性能的原子级模拟研究. 物理学报, 2010, 59(9): 6377-6383. doi: 10.7498/aps.59.6377
    [14] 刘勇. 耦合系统的混沌相位同步. 物理学报, 2009, 58(2): 749-755. doi: 10.7498/aps.58.749
    [15] 周正存, 赵宏平, 顾苏怡, 吴 倩. 快冷Fe-Al合金中的原子缺陷弛豫. 物理学报, 2008, 57(2): 1025-1029. doi: 10.7498/aps.57.1025
    [16] 许 峰, 刘堂晏, 黄永仁. 油水饱和球管孔隙模型弛豫的理论计算与计算机模拟. 物理学报, 2008, 57(1): 550-555. doi: 10.7498/aps.57.550
    [17] 马新国, 唐超群, 黄金球, 胡连峰, 薛 霞, 周文斌. 锐钛矿型TiO2(101)面原子几何及弛豫结构的第一性原理计算. 物理学报, 2006, 55(8): 4208-4213. doi: 10.7498/aps.55.4208
    [18] 许 峰, 刘堂晏, 黄永仁. 射频场照射下多自旋体系弛豫的理论计算. 物理学报, 2006, 55(6): 3054-3059. doi: 10.7498/aps.55.3054
    [19] 许峰, 黄永仁. 射频场照射下扩展的Solomon方程及射频场的照射对异核体系弛豫速率与NOE的影响. 物理学报, 2002, 51(6): 1371-1376. doi: 10.7498/aps.51.1371
    [20] 许峰, 黄永仁. 射频场照射下同核体系的弛豫. 物理学报, 2002, 51(2): 415-419. doi: 10.7498/aps.51.415
计量
  • 文章访问数:  3641
  • PDF下载量:  526
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-12
  • 修回日期:  2015-12-08
  • 刊出日期:  2016-03-05

锂离子动力电池高倍率充放电过程中弛豫行为的仿真

  • 1. 中南大学冶金与环境学院, 长沙 410083;
  • 2. 湖南艾华集团股份有限公司, 益阳 413002
  • 通信作者: 贾明, csulightmetals11@163.com
    基金项目: 国家自然科学基金(批准号: 51204211, 51222403)、中南大学基础研究基金(批准号: 2014zzts029)和工信部工业转型升级强基工程专项(批准号: 0714-EMTC02-5271/6)资助的课题.

摘要: 基于电化学热耦合模型研究了动力锂离子电池高倍率充放电过程中的弛豫行为, 分析对比了不同充放电机制对电池弛豫行为的影响. 研究发现: 充放电过程中, 欧姆极化是造成电压骤变的主要原因; 而恒流-恒压的充电模式能够缓慢消除欧姆极化, 避免电池电压的骤变; 利用恒流恒压对电池进行充电能够充进更多的电量, 有利于电池性能的完全发挥; 固相锂离子浓度的弛豫时间比液相锂离子浓度的弛豫时间长, 并且在放电后期, 固相扩散的特征时间与液相扩散特征时间的比值不断增大, 固相扩散造成的极化在整个放电过程不可忽略.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回