搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准静态颗粒介质的弹性势能弛豫分析

金鑫鑫 金峰 刘宁 孙其诚

引用本文:
Citation:

准静态颗粒介质的弹性势能弛豫分析

金鑫鑫, 金峰, 刘宁, 孙其诚

Analysis of elastic energy relaxation process for granular materials at quasi-static state

Jin Xin-Xin, Jin Feng, Liu Ning, Sun Qi-Cheng
PDF
导出引用
  • 颗粒体系是典型的多体相互作用体系, 具有多重的能量亚稳态. 对于准静态颗粒体系, 引入构型颗粒温度Tc描述弹性势能涨落. 本文认为平衡的体系具有一定的构型颗粒温度Ta, 其量值反映了其结构特征. 当外界扰动激发的构型颗粒温度超出Ta时, 产生不可逆过程. 通过对应力松弛过程的分析, 发现(Tc-Ta)激发了弹性弛豫, 且(Tc-Ta)越大则松弛过程中应力变化越大, 最终构型颗粒温度TcTa时,宏观应力松弛结束,体系达到新的能量亚稳态.
    The granular system has complicated force chain network and multiple relaxation mechanisms. The different relaxation mechanisms have largely effects on others. The force chains divide the whole system into many soft zones which dominate the main dissipation process. The system evolves into lower potential energy state gradually and forms directional arrangement under an external load. During the evolution, the complex relaxation behaviors such as transport and migrant processes, make it difficult to distinguish different dissipated mechanisms. Each single physical mechanism stripping from multiple mechanisms should be studied in depth. While among all the mechanisms, the structure evolution plays a crucial role and needs to be paid more attention to. From the view of potential energy, the detailed energy transformation is illustrated. The granular system is often at a metastable state. When the external disturbance is large enough, the system would step over the energy barrier to a new state. The height of energy barrier is related to the packing structure and grain property. In energy landscape, there exist many energy valleys which correspond to different metastable states. The grain rearrangement and structure reorganization are two main evolution processes at a quasi-static state. The former brings about major potential energy change because of friction and forms certain contact relations. While the latter evolves on the basis of the skeleton formed by grain rearrangement and reaches lower energy state. The conversion among different energy valleys can be used to explain stress relaxation process. In a complex granular system, the choosing of appropriate internal state variables becomes important, which can reflect specific relaxation process and internal characteristics. The energy fluctuation in the system has a huge influence on dissipation process and macroscopic response and is an effective internal variable to have an insight into the structure evolution. Then granular temperature rooted from gas kinetics is introduced to model the macroscopic behaviors. For loose and rapid granular flow, the kinetic granular temperature itself is the root to affect the flow process. While in a dense granular system, the granular temperature at a quasi-static state is referred to as elastic energy fluctuation. The structure can be kept stable when granular temperature exists on account of the mutual confinement among particles. And the granular temperature at a stable state is just a representation of internal structure of granular assembly. When the granular temperature stimulated by the external disturbance exceeds the stable value, the irreversible process happens and the difference between the excited state and stationary state is the driving force for evolution. The stress relaxations under different surface properties and confining pressures are simulated using non-equilibrium theory with new change for granular temperature. It can be found that the granular temperature difference triggers elastic relaxation and force chains reorganization. And the larger the temperature difference, the further away from the steady state the system is and the larger the stress change is. The more smooth the surface and the smaller the confining pressure, the lower resistance is generated, so that the initial granular temperature difference is larger and the stress change is larger during stress relaxation. The granular temperature decreases as time goes by because of its own relaxation. When the difference is equal to zero, the process of stress relaxation finishes and the system evolves into a global minimum of potential energy.
      通信作者: 孙其诚, qcsun@tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51239006, 11572178, 51408333)和清华大学自主科研计划资助的课题.
      Corresponding author: Sun Qi-Cheng, qcsun@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51239006, 11572178, 51408333), and Tsinghua University Initiative Scientific Research Program.
    [1]

    Coussot P 2014 Rheophysics (Switzerland: Springer) 231

    [2]

    Wood D M, Leśniewska D 2011 Granular Matter 13 395

    [3]

    Cundall P A, Strack O D L 1979 Geotechnique 29 47

    [4]

    Li X S, Dafalias Y F 2015 J. Mech. Phys. Solids 78 141

    [5]

    Collins I F, Houlsby G T 1997 Proc. Royal Soc. A 453 1975

    [6]

    Li X S, Dafalias Y F 2012 J. Eng. Mech. ASCE 138 263

    [7]

    Jiang Y M, Liu M 2014 Europhys. J. E 38 1

    [8]

    Jiang Y M, Liu M 2008 Phys. Rev. E 77 02130621

    [9]

    Jiang Y M, Liu M 2009 Granular Matter 11 139

    [10]

    Sun Q, Song S, Jin F, Jiang Y 2012 Theor. Appl. Mech. Lett. 2 021002

    [11]

    Sun Q C, Liu C Q, Zhou G D 2015 Acta Phys. Sin. 64 236101 (in Chinese) [孙其诚, 刘传奇, 周公旦 2015 物理学报 64 236101]

    [12]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 64 076101]

    [13]

    Sun Q, Jin F, Wang G, Song S, Zhang G 2015 Sci. Rep. 5 9652

    [14]

    Charbonneau P, Kurchan J, Parisi G, Urbani P, Zamponi F 2014 Nat. Commun. 5 3725

    [15]

    Song S, Sun Q, Jin F, Zhang C 2014 Acta Mech. Solida Sin. 27 15

    [16]

    Sun Q C 2015 Acta Phys. Sin. 64 076101 (in Chinese) [孙其诚 2015 物理学报 64 076101]

    [17]

    Miksic A, Alava M J 2013 Phys. Rev. E 88 032207

    [18]

    Brujic J, Song C, Wang P, Briscoe C, Marty G, Makse H A 2007 Phys. Rev. Lett. 98 248001

  • [1]

    Coussot P 2014 Rheophysics (Switzerland: Springer) 231

    [2]

    Wood D M, Leśniewska D 2011 Granular Matter 13 395

    [3]

    Cundall P A, Strack O D L 1979 Geotechnique 29 47

    [4]

    Li X S, Dafalias Y F 2015 J. Mech. Phys. Solids 78 141

    [5]

    Collins I F, Houlsby G T 1997 Proc. Royal Soc. A 453 1975

    [6]

    Li X S, Dafalias Y F 2012 J. Eng. Mech. ASCE 138 263

    [7]

    Jiang Y M, Liu M 2014 Europhys. J. E 38 1

    [8]

    Jiang Y M, Liu M 2008 Phys. Rev. E 77 02130621

    [9]

    Jiang Y M, Liu M 2009 Granular Matter 11 139

    [10]

    Sun Q, Song S, Jin F, Jiang Y 2012 Theor. Appl. Mech. Lett. 2 021002

    [11]

    Sun Q C, Liu C Q, Zhou G D 2015 Acta Phys. Sin. 64 236101 (in Chinese) [孙其诚, 刘传奇, 周公旦 2015 物理学报 64 236101]

    [12]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 64 076101]

    [13]

    Sun Q, Jin F, Wang G, Song S, Zhang G 2015 Sci. Rep. 5 9652

    [14]

    Charbonneau P, Kurchan J, Parisi G, Urbani P, Zamponi F 2014 Nat. Commun. 5 3725

    [15]

    Song S, Sun Q, Jin F, Zhang C 2014 Acta Mech. Solida Sin. 27 15

    [16]

    Sun Q C 2015 Acta Phys. Sin. 64 076101 (in Chinese) [孙其诚 2015 物理学报 64 076101]

    [17]

    Miksic A, Alava M J 2013 Phys. Rev. E 88 032207

    [18]

    Brujic J, Song C, Wang P, Briscoe C, Marty G, Makse H A 2007 Phys. Rev. Lett. 98 248001

  • [1] 金肖, 王利民. 非晶材料玻璃转变过程中记忆效应的热力学. 物理学报, 2017, 66(17): 176406. doi: 10.7498/aps.66.176406
    [2] 汤依伟, 艾亮, 程昀, 王安安, 李书国, 贾明. 锂离子动力电池高倍率充放电过程中弛豫行为的仿真. 物理学报, 2016, 65(5): 058201. doi: 10.7498/aps.65.058201
    [3] 颜细平, 彭政, 何菲菲, 蒋亦民. 类固态颗粒物质的剪切弹性行为测量. 物理学报, 2016, 65(12): 124501. doi: 10.7498/aps.65.124501
    [4] 孙其诚. 颗粒介质的结构及热力学. 物理学报, 2015, 64(7): 076101. doi: 10.7498/aps.64.076101
    [5] 孙其诚, 刘传奇, 周公旦. 颗粒介质弹性的弛豫. 物理学报, 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [6] 房营光. 颗粒介质尺度效应的抗剪试验及物理机理分析. 物理学报, 2014, 63(3): 034502. doi: 10.7498/aps.63.034502
    [7] 钱祖文. 颗粒介质中的粘滞系数. 物理学报, 2012, 61(13): 134301. doi: 10.7498/aps.61.134301
    [8] 张炜, 陈文周, 王俊斐, 张小东, 姜振益. MnPd合金相变, 弹性和热力学性质的第一性原理研究. 物理学报, 2012, 61(24): 246201. doi: 10.7498/aps.61.246201
    [9] 杨则金, 令狐荣锋, 程新路, 杨向东. Cr2MC(M=Al, Ga)的电子结构、弹性和热力学性质的第一性原理研究. 物理学报, 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [10] 卢敏, 许卫兵, 刘维清, 侯春菊, 刘志勇. 银纳米杆高温熔化断裂弛豫性能的原子级模拟研究. 物理学报, 2010, 59(9): 6377-6383. doi: 10.7498/aps.59.6377
    [11] 王娜, 唐壁玉. L12型铝合金的结构、弹性和电子性质的第一性原理研究. 物理学报, 2009, 58(13): 230-S234. doi: 10.7498/aps.58.230
    [12] 宜晨虹, 慕青松, 苗天德. 重力作用下颗粒介质应力链的离散元模拟. 物理学报, 2009, 58(11): 7750-7755. doi: 10.7498/aps.58.7750
    [13] 彭政, 陆坤权, 厚美瑛. 阻塞态颗粒介质的慢速阻力. 物理学报, 2009, 58(9): 6566-6572. doi: 10.7498/aps.58.6566
    [14] 周正存, 赵宏平, 顾苏怡, 吴 倩. 快冷Fe-Al合金中的原子缺陷弛豫. 物理学报, 2008, 57(2): 1025-1029. doi: 10.7498/aps.57.1025
    [15] 许 峰, 刘堂晏, 黄永仁. 油水饱和球管孔隙模型弛豫的理论计算与计算机模拟. 物理学报, 2008, 57(1): 550-555. doi: 10.7498/aps.57.550
    [16] 马新国, 唐超群, 黄金球, 胡连峰, 薛 霞, 周文斌. 锐钛矿型TiO2(101)面原子几何及弛豫结构的第一性原理计算. 物理学报, 2006, 55(8): 4208-4213. doi: 10.7498/aps.55.4208
    [17] 许 峰, 刘堂晏, 黄永仁. 射频场照射下多自旋体系弛豫的理论计算. 物理学报, 2006, 55(6): 3054-3059. doi: 10.7498/aps.55.3054
    [18] 王焕友, 曹晓平, 蒋亦民, 刘 佑. 静止颗粒体的应变与弹性. 物理学报, 2005, 54(6): 2784-2790. doi: 10.7498/aps.54.2784
    [19] 许峰, 黄永仁. 射频场照射下扩展的Solomon方程及射频场的照射对异核体系弛豫速率与NOE的影响. 物理学报, 2002, 51(6): 1371-1376. doi: 10.7498/aps.51.1371
    [20] 许峰, 黄永仁. 射频场照射下同核体系的弛豫. 物理学报, 2002, 51(2): 415-419. doi: 10.7498/aps.51.415
计量
  • 文章访问数:  4577
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-14
  • 修回日期:  2016-01-27
  • 刊出日期:  2016-05-05

/

返回文章
返回