- 
				气泡减阻技术对于提高水下航行器推进效率, 降低航行过程中的综合能耗具有重要意义. 本文采用分子动力学方法研究了气-液两相Couette流在平行壁板纳米通道内的流动特性和气泡边界减阻特性, 分析了表面润湿性、壁面粗糙度和气体浓度对边界滑移速度和减阻效果的影响规律. 研究结果表明: 气泡减阻效果随边界滑移速度的增大而增强; 在气-液两相流动区域, 随着剪切速度的增大, 边界吸附气泡的横向变形和边界滑移速度增大, 边界气泡减阻效果增强. 固-气相互作用强度和气体浓度增大均导致气体原子在近壁面的富集现象增强, 提高了壁面上气泡的铺展特性, 从而增大了固-液界面滑移速度. 壁面粗糙度会改变气泡的铺展特性, 影响边界滑移速度, 进而改变流固界面减阻效果; 随着肋高的增大, 气体原子在肋条间凹槽中聚集, 肋条上表面气体原子吸附量减少, 导致固-液界面边界滑移速度减小, 并最终降低了减阻效果. 研究结果将对大型舰船和水下航行器边界减阻技术提供重要理论指导.Bubble drag reduction technology is of great significance in improving the propulsion efficiency of underwater vehicle and reducing the comprehensive energy consumption during navigation. Bubble drag reduction is a highly effective method of reducing the frictional resistance encountered by large ships and underwater vehicles during navigation. It exhibits excellent stability in drag reduction, and has advantages such as environmental friendliness, adaptability to various flow environments, and suitability for all underwater components of ships. Therefore, it is greatly significant to conduct in-depth research on bubble drag reduction and its underlying mechanism. In this work, the flow characteristics and the boundary bubble drag reduction mechanism of gas-liquid Couette flow in parallel wall nanochannels are studied by molecular dynamics method, and the influences of surface wettability, wall roughness, and gas concentration on boundary slip velocity and bubble drag reduction effect are analyzed. The results indicate that the bubble drag reduction effect is enhanced with the increase of boundary slip velocity. In the gas-liquid two-phase flow region, with the increase of shear velocity, the lateral deformation of boundary adsorbed bubble and boundary slip velocity increase, thus enhancing the bubble drag reduction effect. The increase of solid-gas interaction strength and gas concentration can lead to the enrichment of gas atoms near the wall, improve the bubble spreading characteristics on the wall, and thus increase the slip velocity of the solid-liquid interface. The wall roughness can change the spreading characteristics of bubble, affect the boundary slip velocity, and then change the drag reduction effect of the fluid-solid interface. As the rib height increases, gas atoms accumulate in the grooves between ribs and the adsorption quantity of gas atoms on the upper surface of the rib decreases, which leads to the decrease of the boundary slip velocity of the solid-liquid interface and ultimately reduces the drag reduction effect. The research results will provide important theoretical guidance for implementing the boundary drag reduction technology in large ships and underwater vehicles.- 
													Keywords:
													
- bubble drag reduction /
- boundary slip /
- Couette flow /
- molecular dynamics
 [1] Sindagi S, Vijayakumar R 2020 Ships Offshore Struct. 16 968  Google Scholar Google Scholar[2] Fu Y F, Yuan C Q, Bai X Q 2017 Biosurf. Biotribol. 3 11  Google Scholar Google Scholar[3] Gu Y Q, Zhao G, Zheng J X, Li Z Y, Liu W B, Muhammad F K 2014 Ocean Eng. 81 50  Google Scholar Google Scholar[4] 李芳, 赵刚, 刘维新, 张殊, 毕红时 2015 物理学报 64 034703  Google Scholar Google ScholarLi F, Zhao G, Liu W X, Zhang S, Bi H S 2015 Acta Phys. Sin. 64 034703  Google Scholar Google Scholar[5] 康晓宣, 胡建新, 林昭武, 潘定一 2023 力学学报 55 1087  Google Scholar Google ScholarKang X X, Hu J X, Lin Z W, Pan D Y 2023 Acta Mech. Sinica. 55 1087  Google Scholar Google Scholar[6] 史同雨 2020 硕士学位论文(大连: 大连海事大学) Shi T Y 2020 M. S. Thesis (Dalian: Dalian Maritime University [7] Wang H W, Wang K Y, Liu G H 2022 Ocean Eng. 258 111833  Google Scholar Google Scholar[8] 赵超, 吕明利, 贾文广 2022 船舶工程 44 69  Google Scholar Google ScholarZhao C, Lyu M L, Jia W G 2022 Ship Eng. 44 69  Google Scholar Google Scholar[9] 詹杰民, 陆尚平, 李熠华, 李雨田, 胡文清 2023 海洋工程 41 1  Google Scholar Google ScholarZhan J M, Lu S P, Li Y H, Li Y T, Hu W Q 2023 Ocean Eng. 41 1  Google Scholar Google Scholar[10] 张晨远, 张智嘉, 丛巍巍, 魏浩, 张松松 2023 化学通报 86 863  Google Scholar Google ScholarZhang C Y, Zhang Z J, Cong W W, Wei H, Zhang S S 2023 Chem. Bull. 86 863  Google Scholar Google Scholar[11] Moaven K, Rad M, Taeibi-Rahni M 2013 Exp. Therm. Fluid. Sci. 51 239  Google Scholar Google Scholar[12] Gao J, Zhang K, Li H, Lang C, Zhang L X 2023 Prog. Org. Coat. 183 107769  Google Scholar Google Scholar[13] Chen H W, Zhang X, Che D, Zhang D Y, Li X, Li Y Y 2014 Adv. Mech. Eng. 2014 425701  Google Scholar Google Scholar[14] Luo Y, Zhang D, Liu Y, Li Y, Ng E Y K 2015 J. Mech. Med. Biol. 15 1550084  Google Scholar Google Scholar[15] Shen X, Ceccio S L, Perlin M 2006 Exp. Fluids 41 415  Google Scholar Google Scholar[16] Zhao X J, Zong Z 2022 Ocean Eng. 251 111032  Google Scholar Google Scholar[17] Tanaka T, Oishi Y, Park H J, Tasaka Y, Murai Y, Kawakita C 2023 Ocean Eng. 272 113807  Google Scholar Google Scholar[18] Maryami R, Javadpoor M, Farahat S 2016 Heat Mass Transfer 52 2593  Google Scholar Google Scholar[19] Bidkar R A, Leblanc L, Kulkarni A J, Bahadur V, Ceccio S L, Perlin M 2014 Phys. Fluids 26 085108  Google Scholar Google Scholar[20] Mail M, Moosmann M, Häger P, Barthlott W 2019 Phil. Trans. R. Soc. A 377 20190126  Google Scholar Google Scholar[21] Wang F C, Qian J H, Fan J C, Li J C, Xu H Y, Wu H A 2022 Sci. China Phys. Mech. 65 264601  Google Scholar Google Scholar[22] 石小燕, 曾丹苓, 蔡治勇 2005 热科学与技术 4 195  Google Scholar Google ScholarShi X Y, Zeng D L, Cai Z Y 2005 J. Therm. Sci. Technol. 4 195  Google Scholar Google Scholar[23] Weijs J H, Snoeijer J H, Lohse D 2012 Phys. Rev. Lett. 108 104501  Google Scholar Google Scholar[24] Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311  Google Scholar Google Scholar[25] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012  Google Scholar Google Scholar[26] Zhang Z Q, Liu H L, Liu Z, Zhang Z, Cheng G G, Wang X D, Ding J N 2019 Appl. Surf. Sci. 475 857  Google Scholar Google Scholar[27] 刘汉伦, 张忠强, 郝茂磊, 程广贵, 丁建宁 2018 气体物理 3 32  Google Scholar Google ScholarLiu H L, Zhang Z Q, Hao M L, Cheng G G, Ding J N 2018 Phys. Gases 3 32  Google Scholar Google Scholar[28] Ceccio S L 2010 Annu. Rev. Fluid Mech. 42 183  Google Scholar Google Scholar[29] Kitagawa A, Denissenko P, Murai Y 2019 Exp. Therm. Fluid Sci. 104 141  Google Scholar Google Scholar[30] 邢赫威, 陈占秀, 杨历, 苏瑶, 李源华, 呼和仓 2024 物理学报 73 094701  Google Scholar Google ScholarXing H W, Chen Z X, Yang L, Su Y, Li Y H, Huhe C 2024 Acta Phys. Sin. 73 094701  Google Scholar Google Scholar[31] Hu H B, Wang D Z, Ren F, Bao L Y, Priezjev N V, Wen J 2018 Int. J. Multiphase Flow 104 166  Google Scholar Google Scholar[32] 吕鹏宇, 薛亚辉, 段慧玲 2016 力学进展 46 179  Google Scholar Google ScholarLyu P Y, Xue Y H, Duan H L 2016 Adv. Mech. 46 179  Google Scholar Google Scholar[33] García-Magariño A, Lopez-Gavilan P, Sor S, Terroba F 2023 J. Mar. Sci. Eng. 11 1315  Google Scholar Google Scholar[34] Tretyakov N, Müller M 2013 Soft Matter 9 3613  Google Scholar Google Scholar[35] He Y Y, Fu Y H, Wang H, Yang J 2021 Tribol. Int. 162 107144  Google Scholar Google Scholar[36] Tang S N, Zhu Y, Yuan S Q 2023 J. Bionic Eng. 20 2797  Google Scholar Google Scholar[37] He Y Y, Fu Y H, Wang H, Yang J 2022 J. Manuf. Process. 75 1089  Google Scholar Google Scholar
- 
				
    
    
表 1 三相相互作用势能参数 Table 1. Potential energy parameter of three-phase interaction. 两相类型 ε/(kcal·mol–1) σ/Å 固-液 0.41712825 3.4 固-气 0.5958975 4.2 气-液 0.238359 4.488 表 2 不同肋间距对应的粗糙面积分数 Table 2. Rough area fraction corresponding to different rib spacing. 肋间距b/nm 1.2 1.4 1.6 1.8 2.0 2.2 粗糙面积 
 分数 f0.5 0.4545 0.4167 0.3846 0.3571 0.3333 
- 
				
[1] Sindagi S, Vijayakumar R 2020 Ships Offshore Struct. 16 968  Google Scholar Google Scholar[2] Fu Y F, Yuan C Q, Bai X Q 2017 Biosurf. Biotribol. 3 11  Google Scholar Google Scholar[3] Gu Y Q, Zhao G, Zheng J X, Li Z Y, Liu W B, Muhammad F K 2014 Ocean Eng. 81 50  Google Scholar Google Scholar[4] 李芳, 赵刚, 刘维新, 张殊, 毕红时 2015 物理学报 64 034703  Google Scholar Google ScholarLi F, Zhao G, Liu W X, Zhang S, Bi H S 2015 Acta Phys. Sin. 64 034703  Google Scholar Google Scholar[5] 康晓宣, 胡建新, 林昭武, 潘定一 2023 力学学报 55 1087  Google Scholar Google ScholarKang X X, Hu J X, Lin Z W, Pan D Y 2023 Acta Mech. Sinica. 55 1087  Google Scholar Google Scholar[6] 史同雨 2020 硕士学位论文(大连: 大连海事大学) Shi T Y 2020 M. S. Thesis (Dalian: Dalian Maritime University [7] Wang H W, Wang K Y, Liu G H 2022 Ocean Eng. 258 111833  Google Scholar Google Scholar[8] 赵超, 吕明利, 贾文广 2022 船舶工程 44 69  Google Scholar Google ScholarZhao C, Lyu M L, Jia W G 2022 Ship Eng. 44 69  Google Scholar Google Scholar[9] 詹杰民, 陆尚平, 李熠华, 李雨田, 胡文清 2023 海洋工程 41 1  Google Scholar Google ScholarZhan J M, Lu S P, Li Y H, Li Y T, Hu W Q 2023 Ocean Eng. 41 1  Google Scholar Google Scholar[10] 张晨远, 张智嘉, 丛巍巍, 魏浩, 张松松 2023 化学通报 86 863  Google Scholar Google ScholarZhang C Y, Zhang Z J, Cong W W, Wei H, Zhang S S 2023 Chem. Bull. 86 863  Google Scholar Google Scholar[11] Moaven K, Rad M, Taeibi-Rahni M 2013 Exp. Therm. Fluid. Sci. 51 239  Google Scholar Google Scholar[12] Gao J, Zhang K, Li H, Lang C, Zhang L X 2023 Prog. Org. Coat. 183 107769  Google Scholar Google Scholar[13] Chen H W, Zhang X, Che D, Zhang D Y, Li X, Li Y Y 2014 Adv. Mech. Eng. 2014 425701  Google Scholar Google Scholar[14] Luo Y, Zhang D, Liu Y, Li Y, Ng E Y K 2015 J. Mech. Med. Biol. 15 1550084  Google Scholar Google Scholar[15] Shen X, Ceccio S L, Perlin M 2006 Exp. Fluids 41 415  Google Scholar Google Scholar[16] Zhao X J, Zong Z 2022 Ocean Eng. 251 111032  Google Scholar Google Scholar[17] Tanaka T, Oishi Y, Park H J, Tasaka Y, Murai Y, Kawakita C 2023 Ocean Eng. 272 113807  Google Scholar Google Scholar[18] Maryami R, Javadpoor M, Farahat S 2016 Heat Mass Transfer 52 2593  Google Scholar Google Scholar[19] Bidkar R A, Leblanc L, Kulkarni A J, Bahadur V, Ceccio S L, Perlin M 2014 Phys. Fluids 26 085108  Google Scholar Google Scholar[20] Mail M, Moosmann M, Häger P, Barthlott W 2019 Phil. Trans. R. Soc. A 377 20190126  Google Scholar Google Scholar[21] Wang F C, Qian J H, Fan J C, Li J C, Xu H Y, Wu H A 2022 Sci. China Phys. Mech. 65 264601  Google Scholar Google Scholar[22] 石小燕, 曾丹苓, 蔡治勇 2005 热科学与技术 4 195  Google Scholar Google ScholarShi X Y, Zeng D L, Cai Z Y 2005 J. Therm. Sci. Technol. 4 195  Google Scholar Google Scholar[23] Weijs J H, Snoeijer J H, Lohse D 2012 Phys. Rev. Lett. 108 104501  Google Scholar Google Scholar[24] Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311  Google Scholar Google Scholar[25] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012  Google Scholar Google Scholar[26] Zhang Z Q, Liu H L, Liu Z, Zhang Z, Cheng G G, Wang X D, Ding J N 2019 Appl. Surf. Sci. 475 857  Google Scholar Google Scholar[27] 刘汉伦, 张忠强, 郝茂磊, 程广贵, 丁建宁 2018 气体物理 3 32  Google Scholar Google ScholarLiu H L, Zhang Z Q, Hao M L, Cheng G G, Ding J N 2018 Phys. Gases 3 32  Google Scholar Google Scholar[28] Ceccio S L 2010 Annu. Rev. Fluid Mech. 42 183  Google Scholar Google Scholar[29] Kitagawa A, Denissenko P, Murai Y 2019 Exp. Therm. Fluid Sci. 104 141  Google Scholar Google Scholar[30] 邢赫威, 陈占秀, 杨历, 苏瑶, 李源华, 呼和仓 2024 物理学报 73 094701  Google Scholar Google ScholarXing H W, Chen Z X, Yang L, Su Y, Li Y H, Huhe C 2024 Acta Phys. Sin. 73 094701  Google Scholar Google Scholar[31] Hu H B, Wang D Z, Ren F, Bao L Y, Priezjev N V, Wen J 2018 Int. J. Multiphase Flow 104 166  Google Scholar Google Scholar[32] 吕鹏宇, 薛亚辉, 段慧玲 2016 力学进展 46 179  Google Scholar Google ScholarLyu P Y, Xue Y H, Duan H L 2016 Adv. Mech. 46 179  Google Scholar Google Scholar[33] García-Magariño A, Lopez-Gavilan P, Sor S, Terroba F 2023 J. Mar. Sci. Eng. 11 1315  Google Scholar Google Scholar[34] Tretyakov N, Müller M 2013 Soft Matter 9 3613  Google Scholar Google Scholar[35] He Y Y, Fu Y H, Wang H, Yang J 2021 Tribol. Int. 162 107144  Google Scholar Google Scholar[36] Tang S N, Zhu Y, Yuan S Q 2023 J. Bionic Eng. 20 2797  Google Scholar Google Scholar[37] He Y Y, Fu Y H, Wang H, Yang J 2022 J. Manuf. Process. 75 1089  Google Scholar Google Scholar
计量
- 文章访问数: 4069
- PDF下载量: 114
- 被引次数: 0


 
					 
		         
	         
  
					 
										





 
							 下载:
下载: 
				 
							 
							 
							 
							 
							 
							 
							 
							 
							 
							