-
磁等离子体动力学推力器是空间高功率电推进装置的典型代表, 磁等离子体动力学过程是其核心工作机制. 为深入理解外磁场对其工作特性的影响, 本文采用粒子云(particle in cell, PIC)方法结合基于自相似准则的缩比模型, 进行外加磁场作用下磁等离子体动力学推力器工作过程的建模仿真, 通过与实验结果对比验证模型和方法的可靠性, 并重点分析推力器点火启动过程的等离子特性参数分布, 以及外磁场和阴极电流对推力器工作性能的影响. 研究结果表明: 阴阳极放电电弧构建是推力器启动和高效工作的关键步骤; 外磁场强度较低工况不利于构建稳定放电电弧, 等离子体束流集中于轴线附近, 推力主要产生机制是自身场加速; 外磁场强度较高时, 阴阳极放电电弧稳定, 推力产生主要机制是涡旋加速, 推力、比冲随外磁场强度线性增大; 推力器效率随阴极电流和外磁场强度增大而增大; 放电电压随阴极电流增大而增大, 但随外磁场强度的增大表现出先减小后增大的趋势.
-
关键词:
- 磁等离子体动力学推力器 /
- 粒子模拟 /
- 电推力器
The magnetoplasmadynamic thruster is a typical representative of the high-power electric propulsion device, and the magnetoplasmadynamics process is its core operating mechanism. In order to understand the influence of applied magnetic field on its operating characteristics, the particle-in-cell particle simulation method combined with the scale model based on the self-similarity criterion is used to simulate the operating process of magnetoplasmadynamic thruster with applied magnetic field. The reliability of the model and method are verified by comparing with the experimental results. The plasma characteristic parameter distribution of the thruster during ignition is analyzed, and the influence of external magnetic field and cathode current on the thruster performance are discussed. The research results show that the construction of the discharge arc between the cathode and anode is a key step for thruster ignition and efficient operation. A low-intensity magnetic field is not conducive to the construction of a stable discharge arc, while the plasma beam is concentrated near the axis and the main thrust generation mechanism is the self-field acceleration. The discharge arc between cathode and anode is stable by applying a high magnetic field, and the main mechanism of thrust generation is vortex acceleration, which causes the thrust and specific impulse to increase linearly with the strength of the external magnetic field. The efficiency of the thruster increases with cathode current and the applied magnetic field intensity increasing. The discharge voltage increases with the augment of cathode current, but first decreases and then increases with applied magnetic field intensity increasing.-
Keywords:
- magnetoplasmadynamic thruster /
- particle-in-cell /
- electric thruster
[1] Han X, Zhang Z, Chen Z Y, Marano M, Tang H B, Xao J B 2021 J. Phys. D: Appl. Phys. 54 135203Google Scholar
[2] 汤海滨, 王一白, 魏延民 2018 推进技术 39 2401Google Scholar
Tang H T, Wang Y B, Wei Y M 2018 J. Propul. Technol. 39 2401Google Scholar
[3] Brushlinskii K V 1968 USSR Computational Mathematics and Mathematical Physics 8 135Google Scholar
[4] Brushlinskii K V, Gerlakh N I, Morozov A I 1966 Fluid Dyn. 1 134
[5] Kimura I, Toki K, Tanaka M 1982 AIAA J. 20 889Google Scholar
[6] Niewood E H 1993 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)
[7] Sheppard E J 1994 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)
[8] Caldo G, Choueiri E Y, Kelly A J, Jahn R G 1992 Proceedings of the 28th Joint Propulsion Conference and Exhibit, Nashville, July 6–8, 1992
[9] Rudolph L K 1981 Ph. D. Dissertation (Princeton: Princeton University)
[10] Heiermann J, Auweter-Kurtz M 2005 J. Propuls. Power 21 119
[11] 赵博强, 李永, 周成, 王戈, 王宝军, 丛云天 2021 固体火箭技术 44 233Google Scholar
Zhao B Q, Li Y, Zhou C, Wang G, Wang B J, Cong Y T 2021 J. Solid Rocket Technol. 44 233Google Scholar
[12] Sary G, Garrigues L, Boeuf J 2017 Plasma Sources Sci. Technol. 26 055007Google Scholar
[13] Tahsini A M 2014 Appl. Mech. Mater. 598 239Google Scholar
[14] Tskhakaya D, Matyash K, Schneider R, Taccogna F 2007 Contrib. Plasma Phys. 47 563Google Scholar
[15] Tang H B, Cheng J, Liu C, York T M 2012 Phys. Plasmas 19 073108Google Scholar
[16] Li M, Tang H B, Ren J X, York T M 2013 Phys. Plasmas 20 103502Google Scholar
[17] Cheng J, Tang H B, York T M 2014 Phys. Plasmas 21 063501Google Scholar
[18] Li J, Zhang Y, WU J J, Cheng Y Q, Du X R 2019 Energies 12 1579Google Scholar
[19] Fradkin D B 1973 Ph. D. Dissertation (Princeton: Princeton University)
[20] Myers R M 1991. Proceedings of the 27th Joint Propulsion Conference, Sacramento, June 24–26, 1991
[21] 陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901Google Scholar
Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901Google Scholar
[22] Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179Google Scholar
[23] Szabo J J 2001 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)
[24] Khayms V 2000 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)
[25] Taccogna F, Longo S, Capiteli M, Schneider R 2005 Phys. Plasmas 12 053502Google Scholar
-
-
[1] Han X, Zhang Z, Chen Z Y, Marano M, Tang H B, Xao J B 2021 J. Phys. D: Appl. Phys. 54 135203Google Scholar
[2] 汤海滨, 王一白, 魏延民 2018 推进技术 39 2401Google Scholar
Tang H T, Wang Y B, Wei Y M 2018 J. Propul. Technol. 39 2401Google Scholar
[3] Brushlinskii K V 1968 USSR Computational Mathematics and Mathematical Physics 8 135Google Scholar
[4] Brushlinskii K V, Gerlakh N I, Morozov A I 1966 Fluid Dyn. 1 134
[5] Kimura I, Toki K, Tanaka M 1982 AIAA J. 20 889Google Scholar
[6] Niewood E H 1993 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)
[7] Sheppard E J 1994 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)
[8] Caldo G, Choueiri E Y, Kelly A J, Jahn R G 1992 Proceedings of the 28th Joint Propulsion Conference and Exhibit, Nashville, July 6–8, 1992
[9] Rudolph L K 1981 Ph. D. Dissertation (Princeton: Princeton University)
[10] Heiermann J, Auweter-Kurtz M 2005 J. Propuls. Power 21 119
[11] 赵博强, 李永, 周成, 王戈, 王宝军, 丛云天 2021 固体火箭技术 44 233Google Scholar
Zhao B Q, Li Y, Zhou C, Wang G, Wang B J, Cong Y T 2021 J. Solid Rocket Technol. 44 233Google Scholar
[12] Sary G, Garrigues L, Boeuf J 2017 Plasma Sources Sci. Technol. 26 055007Google Scholar
[13] Tahsini A M 2014 Appl. Mech. Mater. 598 239Google Scholar
[14] Tskhakaya D, Matyash K, Schneider R, Taccogna F 2007 Contrib. Plasma Phys. 47 563Google Scholar
[15] Tang H B, Cheng J, Liu C, York T M 2012 Phys. Plasmas 19 073108Google Scholar
[16] Li M, Tang H B, Ren J X, York T M 2013 Phys. Plasmas 20 103502Google Scholar
[17] Cheng J, Tang H B, York T M 2014 Phys. Plasmas 21 063501Google Scholar
[18] Li J, Zhang Y, WU J J, Cheng Y Q, Du X R 2019 Energies 12 1579Google Scholar
[19] Fradkin D B 1973 Ph. D. Dissertation (Princeton: Princeton University)
[20] Myers R M 1991. Proceedings of the 27th Joint Propulsion Conference, Sacramento, June 24–26, 1991
[21] 陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901Google Scholar
Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901Google Scholar
[22] Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179Google Scholar
[23] Szabo J J 2001 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)
[24] Khayms V 2000 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)
[25] Taccogna F, Longo S, Capiteli M, Schneider R 2005 Phys. Plasmas 12 053502Google Scholar
计量
- 文章访问数: 5362
- PDF下载量: 171
- 被引次数: 0