搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同磁路下微型ECR中和器电子引出的模拟研究

夏旭 杨涓 耿海 吴先明 付瑜亮 牟浩 谈人玮

引用本文:
Citation:

不同磁路下微型ECR中和器电子引出的模拟研究

夏旭, 杨涓, 耿海, 吴先明, 付瑜亮, 牟浩, 谈人玮

Numerical simulation of electron extraction from micro electron cyclotron resonance neutralizer under different magnetic circuits

Xia Xu, Yang Juan, Geng Hai, Wu Xian-Ming, Fu Yu-Liang, Mou Hao, Tan Ren-Wei
PDF
HTML
导出引用
  • 电子回旋共振(ECR)中和器是微型ECR离子推力器的重要组成部分, 其引出的电子用于中和ECR离子源的离子束流, 避免了航天器表面电荷堆积, 并且电子引出性能对推力器的整体性能起着重要作用. 为了分析影响微型ECR中和器电子引出的因素, 本文建立了二维轴对称PIC/MCC计算模型, 通过数值模拟研究不同磁路结构对中和器的电子引出, 及不同腔体长度对壁面电流损失的影响. 计算结果表明, ECR区位置和引出孔附近磁场构型对中和器的电子引出性能至关重要. 当ECR区位于天线上游, 电子在迁移扩散中易损失, 并且电子跨过引出孔前电势阱所需的能量更高. 如果更多磁力线平行通过引出孔, 中和器引出相同电子电流所需电压较小. 当ECR区被天线切割或位于下游时, 电子更易沿磁力线迁移到引出孔附近, 从而降低了收集板电压. 研究了同一磁路结构下不同腔体长度对电子引出的影响, 发现增加腔体长度, 使得更多平行轴线的磁力线通过引出孔从而避免电子损失在引出板表面, 增加了引出电子电流. 研究结果有助于设计合理的中和器磁路和腔体尺寸.
    The electron cyclotron resonance (ECR) neutralizer is an important part of the micro ECR ion thruster. The electrons extracted from the neutralizer are used to neutralize the ions extracted from the ECR ion source, thereby avoiding the surface charges accumulating on the spacecraft, and the behaviour of electron extraction affects the overall performance of the thruster. In order to investigate the electron extraction through the orifices of the micro ECR neutralizer, a two-dimensional particle-in-cell with Monte Carlo collision (PIC/MCC) model is established in this work. The effects of different magnetic circuits on the electron extraction of the neutralizer and the influence of different cavity lengths on the wall current loss are studied through numerical simulation. The effects of different magnetic circuit structures on the electron extraction and wall current loss of the neutralizer are studied. The calculation results show that the position of the ECR layer and the magnetic flux lines near the extraction orifices are very important for the electron extraction performance of the neutralizer. When the ECR layer is located upstream of the antenna, electrons are easily lost in migration and diffusion motion, and the energy required for the electrons to cross the potential well before the extraction hole is higher. If more magnetic flux lines pass parallelly through the extraction orifices, the neutralizer requires a small voltage to extract the same electron current. When the ECR layer is cut by the antenna or is located downstream of antenna, more electrons may migrate along the magnetic flux lines to the vicinity of the extraction orifices, thereby reducing the voltage of collector plate. The effects of different cavity lengths on the extraction of electrons under the same magnetic circuit structure are studied. It is found that increasing the length of the cavity allows more parallel-axis magnetic flux lines to pass through the extraction holes to avoid electron loss on the surface of the extraction plate, and thus increasing the extraction electron current. The research results conduce to designing a reasonable neutralizer magnetic circuit and cavity size.
      通信作者: 杨涓, yangjuan@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11875222)和国家重点研发计划(批准号: 2020YFC2201000)资助的课题
      Corresponding author: Yang Juan, yangjuan@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11875222) and National Key R&D program of China (Grant No. 2020YFC2201000)
    [1]

    Koizumi H, Kuninaka H 2010 J. Propul. Power 26 601Google Scholar

    [2]

    Wen J M, Peng S X, Ren H T, Zhang T, Zhang J F, Wu W B, Sun J, Guo Z Y, Chen J E 2018 Chin. Phys. B 27 055204Google Scholar

    [3]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2014 Trans. JSASS Aerospace Technol. Jpn. 12 19

    [4]

    Koizumi H, Kawahara H, Yaginuma K, Asakawa J, Nakagawa Y, Nakagawa Y, Kojima S, Matsuguma T, Funase R, Nakatsuka J, Komurasaki K 2016 Trans. JSASS Aerospace Technol. Jpn. 14 13

    [5]

    金逸舟, 杨涓, 冯冰冰, 罗立涛, 汤明杰 2016 物理学报 65 045201Google Scholar

    Jin Y Z, Yang J, Feng B B, Luo L T, Tang M J 2016 Acta Phys. Sin. 65 045201Google Scholar

    [6]

    Jin Y Z, Yang J, Tang M J, Luo L T, Feng B B 2016 Plasma Sci. Technol. 18 744Google Scholar

    [7]

    夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展 2019 物理学报 68 235202Google Scholar

    Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2019 Acta Phys. Sin. 68 235202Google Scholar

    [8]

    Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2020 Vacuum 179 109517Google Scholar

    [9]

    夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展 2021 物理学报 70 075204Google Scholar

    Xia X, Yang J, Fu Y L, Wu X M, Geng H, Hu Z 2021 Acta Phys. Sin. 70 075204Google Scholar

    [10]

    Ohmichi W, Kuninaka H 2014 J. Propul. Power 30 1368Google Scholar

    [11]

    Masui H, Tashiro Y, Yamamoto N, Nakashima H, Funaki I 2006 Trans. Jpn. Soc. Aeronaut. Space Sci. 49 87Google Scholar

    [12]

    孟海波, 杨涓, 朱康武, 朱康武, 孙俊, 黄益智, 金逸舟, 刘宪闯 2018 西北工业大学学报 36 42Google Scholar

    Meng H B, Yang J, Zhu K W, Sun J, Huang Y Z, Jin Y Z, Liu X C 2018 J. Northwestern Polytech. Univ. 36 42Google Scholar

    [13]

    Hiramoto K, Nakagawa Y, Koizumi H, Komurasaki K, Takao Y 2016 Proceedings of 52nd AIAA/SAE/ASEE Joint Propulsion Conference & Exhibit Salt Lake City, U. S. A., July 25–27, 2016 p4946

    [14]

    Takao Y, Koizumi H, Kasagi Y, Komurasaki K 2016 Trans. JSASS Aerospace Technol. Jpn. 14 41

    [15]

    Sato Y, Koizumi H, Nakano M, Takao Y 2019 J. Appl. Phys. 126 243302Google Scholar

    [16]

    Takao Y, Koizumi H, Komurasaki K, Eriguchi K, Ono K 2014 Plasma Sources Sci. Technol. 23 064004Google Scholar

    [17]

    汤明杰, 杨涓, 冯冰冰, 金逸舟, 罗立涛 2015 推进技术 36 1741Google Scholar

    Tang M J, Yang J, Feng B B, Jin Y Z, Luo L T 2015 J. Propul. Technol. 36 1741Google Scholar

    [18]

    Demmel J W, Gilbert J R, Li X S 1999 SIAM J. Matrix Anal. Appl. 20 915Google Scholar

    [19]

    张帆, 刘君, 陈飙松, 钟万勰 大连理工大学学报 55 449

    Zhang F, Liu J, Chen B S, Zhong W X 2015 J. Dalian Univ. Technol. 55 449 (in Chinese)

    [20]

    Cross Sections Extracted from Program Magboltz, Version 8.97 retrieved on March 6, 2020

    [21]

    Nanbu K 2000 IEEE Trans. Plasma Sci. 28 971Google Scholar

    [22]

    Szabo J 2001 Ph. D. Dissertation (Massachusetts: Institute of Technology)

    [23]

    Dey I, Toyoda Y, Yamamoto N, Nakashima H 2015 Rev. Sci. Instrum. 86 1868

    [24]

    Fu Y L, Yang J, Jin Y Z, Xia X, Meng H B 2019 Acta Astronaut. 164 387Google Scholar

    [25]

    Chen F F 1974 Introduction to Plasma Physics (New York: Springer Science+Business Media) pp139–180

  • 图 1  微型ECR中和器结构

    Fig. 1.  Schematic diagram of the miniature ECR neutralizer

    图 2  电势边界条件

    Fig. 2.  Distribution of potential boundary condition

    图 3  计算流程

    Fig. 3.  Flow chart of calculation.

    图 4  不同磁路下磁场分布 (a)结构1; (b)结构2; (c)结构3

    Fig. 4.  Distributions of magnetic flux density: (a) Structure 1; (b) structure 2; (c) structure 3.

    图 5  15 μs时不同磁路结构下电子密度分布结果 (a) 结构1; (b) 结构2; (c) 结构3

    Fig. 5.  Electron density distribution for different magnetic circuits at 15 μs: (a) Structure 1; (b) structure 2; (c) structure 3.

    图 6  15 μs时不同磁路结构下电势分布结果 (a) 结构1; (b) 结构2; (c) 结构3

    Fig. 6.  Potential distribution for different magnetic circuits at 15 μs: (a) Structure 1; (b) structure 2; (c) structure 3.

    图 7  结构2(L1 = 3.9 mm)的模拟与实验结果对比

    Fig. 7.  Simulation and experimental results of structure 2 (L1 = 3.9 mm).

    图 8  15 μs时结构2(L1 = 4.3 mm)的模拟结果 (a) 电子密度; (b) 电势

    Fig. 8.  Simulation results for structure 2 (L1 = 4.3 mm) at 15 μs: (a) Electron density; (b) potential.

    图 9  r = 5 mm, 不同结构下引出板孔中心轴线电势分布

    Fig. 9.  The potential distribution of the central axis (at r = 5 mm) of the orifice plate with different structures.

    图 10  结构2不同腔体下孔板各表面上的电子电流密度

    Fig. 10.  The electron current density on different surfaces of the orifice plate for neutralizer of structure 2 at the different cavities.

    表 1  磁路几何参数

    Table 1.  Geometric parameters of magnetic circuits

    H1/mmW1/mmH2/mmW2/mm
    结构15.425.41.65
    结构25.62.75.81.8
    结构35.835.61.8
    下载: 导出CSV

    表 2  不同磁路下中和器引出束流的模拟结果与实验结果

    Table 2.  Simulation and experiment results of different magnetic circuits.

    收集板
    电压φ/V
    实验结果Ie/mA模拟结果Ie/mA电流相对
    误差
    结构1441.01.1111%
    结构2151.01.1414%
    结构3241.01.088%
    下载: 导出CSV
  • [1]

    Koizumi H, Kuninaka H 2010 J. Propul. Power 26 601Google Scholar

    [2]

    Wen J M, Peng S X, Ren H T, Zhang T, Zhang J F, Wu W B, Sun J, Guo Z Y, Chen J E 2018 Chin. Phys. B 27 055204Google Scholar

    [3]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2014 Trans. JSASS Aerospace Technol. Jpn. 12 19

    [4]

    Koizumi H, Kawahara H, Yaginuma K, Asakawa J, Nakagawa Y, Nakagawa Y, Kojima S, Matsuguma T, Funase R, Nakatsuka J, Komurasaki K 2016 Trans. JSASS Aerospace Technol. Jpn. 14 13

    [5]

    金逸舟, 杨涓, 冯冰冰, 罗立涛, 汤明杰 2016 物理学报 65 045201Google Scholar

    Jin Y Z, Yang J, Feng B B, Luo L T, Tang M J 2016 Acta Phys. Sin. 65 045201Google Scholar

    [6]

    Jin Y Z, Yang J, Tang M J, Luo L T, Feng B B 2016 Plasma Sci. Technol. 18 744Google Scholar

    [7]

    夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展 2019 物理学报 68 235202Google Scholar

    Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2019 Acta Phys. Sin. 68 235202Google Scholar

    [8]

    Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2020 Vacuum 179 109517Google Scholar

    [9]

    夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展 2021 物理学报 70 075204Google Scholar

    Xia X, Yang J, Fu Y L, Wu X M, Geng H, Hu Z 2021 Acta Phys. Sin. 70 075204Google Scholar

    [10]

    Ohmichi W, Kuninaka H 2014 J. Propul. Power 30 1368Google Scholar

    [11]

    Masui H, Tashiro Y, Yamamoto N, Nakashima H, Funaki I 2006 Trans. Jpn. Soc. Aeronaut. Space Sci. 49 87Google Scholar

    [12]

    孟海波, 杨涓, 朱康武, 朱康武, 孙俊, 黄益智, 金逸舟, 刘宪闯 2018 西北工业大学学报 36 42Google Scholar

    Meng H B, Yang J, Zhu K W, Sun J, Huang Y Z, Jin Y Z, Liu X C 2018 J. Northwestern Polytech. Univ. 36 42Google Scholar

    [13]

    Hiramoto K, Nakagawa Y, Koizumi H, Komurasaki K, Takao Y 2016 Proceedings of 52nd AIAA/SAE/ASEE Joint Propulsion Conference & Exhibit Salt Lake City, U. S. A., July 25–27, 2016 p4946

    [14]

    Takao Y, Koizumi H, Kasagi Y, Komurasaki K 2016 Trans. JSASS Aerospace Technol. Jpn. 14 41

    [15]

    Sato Y, Koizumi H, Nakano M, Takao Y 2019 J. Appl. Phys. 126 243302Google Scholar

    [16]

    Takao Y, Koizumi H, Komurasaki K, Eriguchi K, Ono K 2014 Plasma Sources Sci. Technol. 23 064004Google Scholar

    [17]

    汤明杰, 杨涓, 冯冰冰, 金逸舟, 罗立涛 2015 推进技术 36 1741Google Scholar

    Tang M J, Yang J, Feng B B, Jin Y Z, Luo L T 2015 J. Propul. Technol. 36 1741Google Scholar

    [18]

    Demmel J W, Gilbert J R, Li X S 1999 SIAM J. Matrix Anal. Appl. 20 915Google Scholar

    [19]

    张帆, 刘君, 陈飙松, 钟万勰 大连理工大学学报 55 449

    Zhang F, Liu J, Chen B S, Zhong W X 2015 J. Dalian Univ. Technol. 55 449 (in Chinese)

    [20]

    Cross Sections Extracted from Program Magboltz, Version 8.97 retrieved on March 6, 2020

    [21]

    Nanbu K 2000 IEEE Trans. Plasma Sci. 28 971Google Scholar

    [22]

    Szabo J 2001 Ph. D. Dissertation (Massachusetts: Institute of Technology)

    [23]

    Dey I, Toyoda Y, Yamamoto N, Nakashima H 2015 Rev. Sci. Instrum. 86 1868

    [24]

    Fu Y L, Yang J, Jin Y Z, Xia X, Meng H B 2019 Acta Astronaut. 164 387Google Scholar

    [25]

    Chen F F 1974 Introduction to Plasma Physics (New York: Springer Science+Business Media) pp139–180

  • [1] 罗凌峰, 杨涓, 耿海, 吴先明, 牟浩. 磁场对电子回旋共振中和器等离子体与电子引出影响的数值模拟. 物理学报, 2024, 73(16): 165203. doi: 10.7498/aps.73.20240612
    [2] 付瑜亮, 杨涓, 王彬, 胡展, 夏旭, 牟浩. 2 cm电子回旋共振离子源猝灭现象模拟. 物理学报, 2022, 71(8): 085203. doi: 10.7498/aps.71.20212151
    [3] 夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展. 2 cm电子回旋共振离子推力器离子源中磁场对等离子体特性与壁面电流影响的数值模拟. 物理学报, 2021, 70(7): 075204. doi: 10.7498/aps.70.20201667
    [4] 夏旭, 杨涓, 耿海, WU Xian-Ming, 付瑜亮, 牟浩, 谈人玮. 不同磁路下微型ECR中和器电子引出的模拟研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211519
    [5] 新波, 张小宁, 李韵, 崔万照, 张洪太, 李永东, 王洪广, 翟永贵, 刘纯亮. 多载波微放电阈值的粒子模拟及分析. 物理学报, 2017, 66(15): 157901. doi: 10.7498/aps.66.157901
    [6] 王宬朕, 董全力, 刘苹, 吴奕莹, 盛政明, 张杰. 激光等离子体中高能电子各向异性压强的粒子模拟. 物理学报, 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [7] 王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东. 基于频域电磁场的微波器件微放电阈值快速粒子模拟. 物理学报, 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [8] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟. 物理学报, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [9] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法. 物理学报, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [10] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [11] 陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉. 基于粒子模拟和并行遗传算法的高功率微波源优化设计. 物理学报, 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [12] 王辉辉, 刘大刚, 蒙林, 刘腊群, 杨超, 彭凯, 夏蒙重. 气体电离的全三维电磁粒子模拟/蒙特卡罗数值研究. 物理学报, 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [13] 刘雷, 李永东, 王瑞, 崔万照, 刘纯亮. 微波阶梯阻抗变换器低气压电晕放电粒子模拟. 物理学报, 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [14] 郭帆, 李永东, 王洪广, 刘纯亮, 呼义翔, 张鹏飞, 马萌. Z箍缩装置外磁绝缘传输线全尺寸粒子模拟研究. 物理学报, 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [15] 杨超, 刘大刚, 周俊, 廖臣, 彭凯, 刘盛纲. 一种新型径向三腔同轴虚阴极振荡器全三维粒子模拟研究. 物理学报, 2011, 60(8): 084102. doi: 10.7498/aps.60.084102
    [16] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟. 物理学报, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [17] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅰ)——物理模型与理论方法. 物理学报, 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
    [18] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅱ)——数值模拟与结果讨论. 物理学报, 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [19] 宫玉彬, 张 章, 魏彦玉, 孟凡宝, 范植开, 王文祥. 高功率微波器件中脉冲缩短现象的粒子模拟. 物理学报, 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
    [20] 简广德, 董家齐. 环形等离子体中电子温度梯度不稳定性的粒子模拟. 物理学报, 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
计量
  • 文章访问数:  3701
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-17
  • 修回日期:  2021-10-23
  • 上网日期:  2022-02-10
  • 刊出日期:  2022-02-20

/

返回文章
返回