搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2 cm电子回旋共振离子源猝灭现象模拟

付瑜亮 杨涓 王彬 胡展 夏旭 牟浩

引用本文:
Citation:

2 cm电子回旋共振离子源猝灭现象模拟

付瑜亮, 杨涓, 王彬, 胡展, 夏旭, 牟浩

Numerical study on abnormal flameout of 2-cm electron cyclotron resonance ion source

Fu Yu-Liang, Yang Juan, Wang Bin, Hu Zhan, Xia Xu, Mu Hao
PDF
HTML
导出引用
  • 2 cm电子回旋共振离子推力器具有高比冲、长寿命的特点, 其应用于引力波探测的可行性已经过初步探索. 然而, 在探究离子源推力下限的过程中发现, 在极低功率(0.5 W)和极低流量(0.1 sccm, 1 sccm = 1 L/min)的极限工作状态下, 过度施加栅极电压可能引发离子源猝灭. 采用实验手段对猝灭现象进行观测的难度很大, 一方面因为猝灭现象具有随机性和瞬时性; 另一方面, 介入式诊断对弱放电水平的等离子体干扰很大, 而光学诊断又有栅极系统阻挡. 为此本文采用全粒子数值模型对离子源进行了一体化模拟, 复现了猝灭现象. 模拟结果表明, 天线和放电室之间的双极扩散是导致离子源猝灭的最根本原因. 明晰了猝灭机理后, 本文提出了相应的改进措施, 并用一体化模拟进行了理论验证. 对猝灭机理的研究将为离子源的设计和应用提供理论依据, 保障离子源安全稳定工作, 满足引力波探测任务的推力需求.
    A 2-cm electron cyclotron resonance ion source has the advantages of long life and high specific impulse, which can meet the requirements for space gravitational waves detection. In the experiment on finding the lower limit of thrust, it is found that when the ion source operates under the extreme condition of 0.5-W microwave power and 0.1-sccm gas flow rate, increasing the voltages of grid system excessively may cause flameout. The plasma discharge level is controlled by the gas supply, microwave, and power supply system, and their small disturbances will make experimental results different, thus the flameout of the ion source appears randomly and transiently. Besides, it is difficult to observe the flameout phenomenon experimentally, because the probe diagnosis has big interference to low-density plasma, and the optical diagnosis is blocked by the grid system. Therefore, the integrative simulation with the full particle-in-cell method is used to simulate the operating process of the ion source, whose calculation range includes the discharge chamber, grid system, and plume. Through simulating the processes of plasma discharge and ion beam extraction continuously in space and time, the flameout phenomenon can be reproduced artificially after increasing the voltages of grid system. The simulation results show that the ambipolar diffusion between the antenna and discharge chamber is the fundamental reason for the flameout of the ion source. In the circuit, the antenna does not touch the discharge chamber but for bulk plasma, which makes its surface gradually accumulate charges until it reaches the floating potential. Because the increase of the voltage of antenna lags behind that of grid system, a strong electric field will appear between the antenna and chamber. Then, electrons and ions respectively move toward the chamber and antenna, the ambipolar diffusion helps the antenna reach the floating potential rapidly. When the plasma density inside the chamber is low, the ambipolar diffusion will cause flameout. In order to avoid the flameout of the ion source in such an extreme situation, an improvement measure that the voltage of antenna equals the voltage of chamber is proposed, which is verified by the integrative simulation. The study on the flameout phenomenon will provide a theoretical basis for the design and application of the ion source, which can help the ion source operate safely to meet the requirements for space gravitational wave detection.
      通信作者: 杨涓, yangjuan@nwpu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFC2201000)和国家自然科学基金(批准号: 11875222)资助的课题
      Corresponding author: Yang Juan, yangjuan@nwpu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFC2201000) and the National Natural Science Foundation of China (Grant No. 11875222)
    [1]

    Lemmer K 2017 Acta Astronaut. 134 231Google Scholar

    [2]

    Blanco A, Roy S 2017 J. Phys. D: Appl. Phys. 50 455201Google Scholar

    [3]

    Xu S Y, Xu L X, Cong L X, Li Y G, Qiao C F 2021 Int. J. Mod. Phys. A 36 2140013Google Scholar

    [4]

    Boeuf J P 2017 J. Appl. Phys. 121 011101Google Scholar

    [5]

    He J W, Duan L, Kang Q 2021 Int. J. Mod. Phys. A 36 2140014Google Scholar

    [6]

    马隆飞, 贺建武, 杨超, 段俐, 康琦 2021 推进技术 42 474

    Ma L F, He J W, Yang C, Duan L, Kang Q 2021 J. Propuls. Tech. 42 474

    [7]

    Chen C, Chen M L, Zhou H H 2020 Plasma Sci. Technol. 22 094009Google Scholar

    [8]

    Jia H W, Chen M L, Liu X H, Chen C, Zhou H H, Zhou H, Han Z C 2021 Plasma Sci. Technol. 23 104003Google Scholar

    [9]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2018 J. Propuls. Power. 34 4

    [10]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2014 Trans. JSASS Aerospace Tech. 12 Tb_19

    [11]

    胡展, 杨涓, 陈茂林, 于达仁, 朱悉铭 2020 西北工业大学学报 38 733Google Scholar

    Hu Z, Yang J, Chen M L, Yu D R, Zhu X M 2020 J. NorthWest Polytechnical Univ. 38 733Google Scholar

    [12]

    胡展 2021 硕士学位论文 (西安: 西北工业大学)

    Hu Z 2021 M. S. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese)

    [13]

    Yang J, Fu Y L, Liu X C, Meng H B, Jin Y Z 2018 Plasma Sci. Technol. 20 085402Google Scholar

    [14]

    Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2020 Vacuum 179 109517Google Scholar

    [15]

    夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展 2021 物理学报 70 075204Google Scholar

    Xia X, Yang J, Fu Y L, Wu X M, Geng H, Hu Z 2021 Acta Phys. Sin. 70 075204Google Scholar

    [16]

    Fu Y L, Yang J, Jin Y Z, Xia X, Meng H B 2019 Acta Astronaut. 164 387Google Scholar

    [17]

    Fu Y L, Yang J, Geng H, Wu X M, Hu Z 2021 Vacuum 184 109932Google Scholar

    [18]

    Greaves D 2004 J. Comput. Phys. 194 35Google Scholar

    [19]

    Min C, Gibou F, Ceniceros H 2006 J. Comput. Phys. 218 123Google Scholar

    [20]

    迈克尔 A·力伯曼, 阿伦 J·里登伯格 著 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第131—132页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp131–132 (in Chinese)

    [21]

    Ataka Y, Nakagawa Y, Koizumi H, Komurasaki K 2021 Acta Astronaut. 187 133Google Scholar

  • 图 1  离子源实验系统

    Fig. 1.  Schematic diagram of experimental system.

    图 2  2 cm ECR离子源放电图像 (a) 0.3 sccm, 2 W; (b) 0.1 sccm, 2 W; (c) 0.1 sccm, 0.5 W

    Fig. 2.  Discharge images of 2 cm ECR ion source: (a) 0.3 sccm, 2 W; (b) 0.1 sccm, 2 W; (c) 0.1 sccm, 0.5 W.

    图 3  计算域

    Fig. 3.  Simulation region.

    图 4  带电粒子受力分析 (a)二维模型; (b)实际情况

    Fig. 4.  Force analysis of charged particles in aperture: (a)Two-dimensional model; (b)real situation.

    图 5  初始等离子体密度分布 (a)离子密度分布; (b)电子密度分布

    Fig. 5.  Initial plasma density distribution: (a) Ion density distribution; (b) electron density distribution.

    图 6  电子宏粒子数变化曲线 (a)栅极电压连续变化; (b)栅极电压单点变化

    Fig. 6.  Number curves of macroparticle of electron: (a)Voltages of grid system increase continuously; (b)voltages of grid system increase individually.

    图 7  天线表面累积电荷数 (a)栅极电压连续变化; (b)栅极电压单点变化

    Fig. 7.  Charges accumulating on antenna: (a)Voltages of grid system increase continuously; (b) voltages of grid system increase individually.

    图 8  Child-Langmuir鞘层边界变化

    Fig. 8.  Boundary movement of Child-Langmuir sheath.

    图 9  $ {\varphi }_{{\rm{s}}{\rm{g}}} = 700\;{\rm{V}} $时, 离子源内有无双极扩散的模拟结果

    Fig. 9.  Simulation results with or without ambipolar diffusion in ion source at $ {\varphi }_{{\rm{s}}{\rm{g}}} = 700\;{\rm{V}} $

    表 1  不同区域的网格层级和长度

    Table 1.  Mesh level and length in different regions.

    区域网格层级网格步长/mm
    栅极系统120.025
    放电室110.05
    近场羽流100.10
    羽流190.20
    羽流280.40
    羽流370.80
    羽流461.60
    下载: 导出CSV
  • [1]

    Lemmer K 2017 Acta Astronaut. 134 231Google Scholar

    [2]

    Blanco A, Roy S 2017 J. Phys. D: Appl. Phys. 50 455201Google Scholar

    [3]

    Xu S Y, Xu L X, Cong L X, Li Y G, Qiao C F 2021 Int. J. Mod. Phys. A 36 2140013Google Scholar

    [4]

    Boeuf J P 2017 J. Appl. Phys. 121 011101Google Scholar

    [5]

    He J W, Duan L, Kang Q 2021 Int. J. Mod. Phys. A 36 2140014Google Scholar

    [6]

    马隆飞, 贺建武, 杨超, 段俐, 康琦 2021 推进技术 42 474

    Ma L F, He J W, Yang C, Duan L, Kang Q 2021 J. Propuls. Tech. 42 474

    [7]

    Chen C, Chen M L, Zhou H H 2020 Plasma Sci. Technol. 22 094009Google Scholar

    [8]

    Jia H W, Chen M L, Liu X H, Chen C, Zhou H H, Zhou H, Han Z C 2021 Plasma Sci. Technol. 23 104003Google Scholar

    [9]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2018 J. Propuls. Power. 34 4

    [10]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2014 Trans. JSASS Aerospace Tech. 12 Tb_19

    [11]

    胡展, 杨涓, 陈茂林, 于达仁, 朱悉铭 2020 西北工业大学学报 38 733Google Scholar

    Hu Z, Yang J, Chen M L, Yu D R, Zhu X M 2020 J. NorthWest Polytechnical Univ. 38 733Google Scholar

    [12]

    胡展 2021 硕士学位论文 (西安: 西北工业大学)

    Hu Z 2021 M. S. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese)

    [13]

    Yang J, Fu Y L, Liu X C, Meng H B, Jin Y Z 2018 Plasma Sci. Technol. 20 085402Google Scholar

    [14]

    Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2020 Vacuum 179 109517Google Scholar

    [15]

    夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展 2021 物理学报 70 075204Google Scholar

    Xia X, Yang J, Fu Y L, Wu X M, Geng H, Hu Z 2021 Acta Phys. Sin. 70 075204Google Scholar

    [16]

    Fu Y L, Yang J, Jin Y Z, Xia X, Meng H B 2019 Acta Astronaut. 164 387Google Scholar

    [17]

    Fu Y L, Yang J, Geng H, Wu X M, Hu Z 2021 Vacuum 184 109932Google Scholar

    [18]

    Greaves D 2004 J. Comput. Phys. 194 35Google Scholar

    [19]

    Min C, Gibou F, Ceniceros H 2006 J. Comput. Phys. 218 123Google Scholar

    [20]

    迈克尔 A·力伯曼, 阿伦 J·里登伯格 著 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第131—132页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp131–132 (in Chinese)

    [21]

    Ataka Y, Nakagawa Y, Koizumi H, Komurasaki K 2021 Acta Astronaut. 187 133Google Scholar

  • [1] 杨温渊, 董烨, 孙会芳, 杨郁林, 董志伟. 超宽带等离子体相对论微波噪声放大器的物理分析和数值模拟. 物理学报, 2023, 72(5): 058401. doi: 10.7498/aps.72.20222061
    [2] 汪耀庭, 罗岚月, 李和平, 姜东君, 周明胜. 外加电场作用下的壁面约束衰亡等离子体中带电粒子非平衡输运特性. 物理学报, 2022, 71(23): 232801. doi: 10.7498/aps.71.20221431
    [3] 武文斌, 彭士香, 张艾霖, 周海京, 马腾昊, 蒋耀湘, 李凯, 崔步坚, 郭之虞, 陈佳洱. 微型电子回旋共振离子源的全局模型. 物理学报, 2022, 71(14): 145204. doi: 10.7498/aps.71.20212250
    [4] 张钰如, 高飞, 王友年. 低气压感性耦合等离子体源模拟研究进展. 物理学报, 2021, 70(9): 095206. doi: 10.7498/aps.70.20202247
    [5] 夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展. 2 cm电子回旋共振离子推力器离子源中磁场对等离子体特性与壁面电流影响的数值模拟. 物理学报, 2021, 70(7): 075204. doi: 10.7498/aps.70.20201667
    [6] 王宬朕, 董全力, 刘苹, 吴奕莹, 盛政明, 张杰. 激光等离子体中高能电子各向异性压强的粒子模拟. 物理学报, 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [7] 金逸舟, 杨涓, 冯冰冰, 罗立涛, 汤明杰. 不同磁路电子回旋共振离子源引出实验. 物理学报, 2016, 65(4): 045201. doi: 10.7498/aps.65.045201
    [8] 邹长林, 叶文华, 卢新培. 一维动理学数值模拟激光与等离子体的相互作用. 物理学报, 2014, 63(8): 085207. doi: 10.7498/aps.63.085207
    [9] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [10] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟. 物理学报, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [11] 王宇, 陈再高, 雷奕安. 等离子体填充0.14 THz相对论返波管模拟. 物理学报, 2013, 62(12): 125204. doi: 10.7498/aps.62.125204
    [12] 陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟. 气体压强及表面等离激元影响表面波等离子体电离发展过程的粒子模拟. 物理学报, 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [13] 杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛纲. 基于负氢离子源的全三维PIC/MCC模拟算法研究. 物理学报, 2012, 61(4): 045204. doi: 10.7498/aps.61.045204
    [14] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟. 物理学报, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [15] 巩华荣, 宫玉彬, 魏彦玉, 唐昌建, 薛东海, 王文祥. 考虑到束-波相互作用的速调管离子噪声二维模拟. 物理学报, 2006, 55(10): 5368-5374. doi: 10.7498/aps.55.5368
    [16] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅰ)——物理模型与理论方法. 物理学报, 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
    [17] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅱ)——数值模拟与结果讨论. 物理学报, 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [18] 卓红斌, 胡庆丰, 刘 杰, 迟利华, 张文勇. 超短脉冲激光与稀薄等离子体相互作用的准静态粒子模拟研究. 物理学报, 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [19] 简广德, 董家齐. 环形等离子体中电子温度梯度不稳定性的粒子模拟. 物理学报, 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
    [20] 裴慧元, 方家熊. Cd0.96Zn0.04Te低温Raman光谱中荧光背景的猝灭现象. 物理学报, 2001, 50(5): 968-972. doi: 10.7498/aps.50.968
计量
  • 文章访问数:  2780
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 修回日期:  2021-12-31
  • 上网日期:  2022-01-27
  • 刊出日期:  2022-04-20

/

返回文章
返回