搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维动理学数值模拟激光与等离子体的相互作用

邹长林 叶文华 卢新培

引用本文:
Citation:

一维动理学数值模拟激光与等离子体的相互作用

邹长林, 叶文华, 卢新培

Study of laser plasma interactions using one-dimensional particle-in-cell code in kinetic regime

Zou Chang-Lin, Ye Wen-Hua, Lu Xin-Pei
PDF
导出引用
  • 利用一维(1D3V)、显式、全电磁、相对论粒子模拟代码研究动理学范畴内激光与等离子体相互作用中的受激拉曼散射,给出了粒子代码的控制方程及其数值离散的详细方案. 研究表明:动理学效应在受激拉曼散射不稳定性中十分重要;时间平均的反射率在阈值强度处跃升,在更高的激光强度处达到饱和;受激拉曼背向散射周期性地在次皮秒内爆发,离子效应延迟背向拉曼散射的发生;电子俘获导致了背向拉曼散射出现爆发;Langmuir波的非线性频移使得背向散射达到饱和.
    Stimulated Raman scatting (SRS), which is one of the parametric processes of laser-plasma interactions, is examined by an explicit, electromagnetic, relativistic kinetic particle-in-cell code in one dimension. The code algorithm and implementation details are discussed. It is found that kinetic effects are important to SRS instability. Time-averaged reflectivity onsets at threshold intensity, and saturates at higher intensity. Backward SRS bursts in sub-picosecond, periodically. Kinetic ions initially delay the growth of SRS. Electron trapping results in the SRS bursts. The saturation of SRS results from the nonlinear frequency shift of Langmuir wave. Work is underway to add binary Coulomb collision to parallelize it, and to extend the code to 2D3V.
    [1]

    Kruer W L 1988 The Physics of Laser Plasma Interactions (Redwood City: Addison-Wesley)

    [2]

    Kirkwood R K, Moody J D, Kline J, Dewald E, Glenzer S, Divol L, Michel P, Hinkel D, Berger R, Williams E, Milovich J, Yin L, Rose H, MacGowan B, Landen O, Rosen M, Lindl J 2013 Plasma Phys. Control. Fusion 55 103001

    [3]

    Birdsall C K, Langdon A B 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill)

    [4]

    Bowers K J, Albright B J, Yin L, Bergen B, Kwan T J T 2008 Phys. Plasmas 15 055703

    [5]

    Yin L, Albright B J, Rose H A, Bowers K J, Bergen B, Kirkwood R K, Hinkel D E, Langdon A B, Michel P, Montgomery D S, Kline J L 2012 Phys. Plasmas 19 056304

    [6]

    Yin L, Albright B J, Rose H A, Montgomery D S, Kline J L, Kirkwood R K, Michel P, Bowers K J, Bergen B 2013 Phys. Plasmas 20 012702

    [7]

    Fonseca R A, Martins S F, Silva L O, Tonge J W, Tsung F S, Mori W B 2008 Plasma Phys. Control. Fusion 50 124034

    [8]

    Winjum B J, Fahlen J E, Tsung F S, Mori W B 2010 Phys. Rev. E 81 045401

    [9]

    Winjum B J, Fahlen J E, Tsung F S, Mori W B 2013 Phys. Rev. Lett. 110 165001

    [10]

    Nieter C, Cary J R 2004 J. Compt. Phys. 196 448

    [11]

    Jin Z Y, Shen B F, Zhang X M, Wang F C, Ji L L 2009 Chin. Phys. B 18 5295

    [12]

    Yin L, Daughton W, Albright B J, Bowers K J, Montgomery D S, Kline J L, Fernández J C, Roper Q 2006 Phys. Plasmas 13 072701

    [13]

    Masson-Laborde P E, Rozmus W, Peng Z, Pesme D, Hller S, Casanova M, Bychenkov V Y, Chapman T, Loiseau P 2010 Phys. Plasmas 17 092704

    [14]

    Friou A, Benisti D, Gremillet L, Lefebvre E, Morice O, Siminos E, Strozzi D J 2013 Phys. Plasmas 20 103103

    [15]

    Montgomery D S, Cobble J A, Fernández J C, Focia R J, Johnson R P, Renard-LeGalloudec N, Rose H A, D A Russell 2002 Phys. Plasmas 9 2311

    [16]

    Liu Z J, Zhu S P, Cao L H, Zheng C Y 2007 Acta Phys. Sin. 56 7084 (in Chinese) [刘占军, 朱少平, 曹莉华, 郑春阳 2007 物理学报 56 7084]

    [17]

    Villasenor J, Buneman O 1992 Comput. Phys. Commun. 69 306

    [18]

    Wu H C 2011 arXiv: 1104.3163v1 [physics. plasm-ph]

    [19]

    Taflove A, Hagness C 2005 Computaional Electrodynamics: The Finite-Difference Time-Domain Method (Norwood: Artech House)

    [20]

    Strozzi D J, Williams E A, Langdon A B, Bers A 2007 Phys. Plasmas 14 013104

    [21]

    Brunner S, Valeo E J 2004 Phys. Rev. Lett. 93 145003

    [22]

    O’Neil T 1968 Phys. Fluids 8 2255

    [23]

    Vu H X, DuBois D F, Bezzerides B 2002 Phys. Plasmas 9 1745

    [24]

    Morales G L, O’Neil T M 1972 Phys. Rev. Lett. 28 417

  • [1]

    Kruer W L 1988 The Physics of Laser Plasma Interactions (Redwood City: Addison-Wesley)

    [2]

    Kirkwood R K, Moody J D, Kline J, Dewald E, Glenzer S, Divol L, Michel P, Hinkel D, Berger R, Williams E, Milovich J, Yin L, Rose H, MacGowan B, Landen O, Rosen M, Lindl J 2013 Plasma Phys. Control. Fusion 55 103001

    [3]

    Birdsall C K, Langdon A B 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill)

    [4]

    Bowers K J, Albright B J, Yin L, Bergen B, Kwan T J T 2008 Phys. Plasmas 15 055703

    [5]

    Yin L, Albright B J, Rose H A, Bowers K J, Bergen B, Kirkwood R K, Hinkel D E, Langdon A B, Michel P, Montgomery D S, Kline J L 2012 Phys. Plasmas 19 056304

    [6]

    Yin L, Albright B J, Rose H A, Montgomery D S, Kline J L, Kirkwood R K, Michel P, Bowers K J, Bergen B 2013 Phys. Plasmas 20 012702

    [7]

    Fonseca R A, Martins S F, Silva L O, Tonge J W, Tsung F S, Mori W B 2008 Plasma Phys. Control. Fusion 50 124034

    [8]

    Winjum B J, Fahlen J E, Tsung F S, Mori W B 2010 Phys. Rev. E 81 045401

    [9]

    Winjum B J, Fahlen J E, Tsung F S, Mori W B 2013 Phys. Rev. Lett. 110 165001

    [10]

    Nieter C, Cary J R 2004 J. Compt. Phys. 196 448

    [11]

    Jin Z Y, Shen B F, Zhang X M, Wang F C, Ji L L 2009 Chin. Phys. B 18 5295

    [12]

    Yin L, Daughton W, Albright B J, Bowers K J, Montgomery D S, Kline J L, Fernández J C, Roper Q 2006 Phys. Plasmas 13 072701

    [13]

    Masson-Laborde P E, Rozmus W, Peng Z, Pesme D, Hller S, Casanova M, Bychenkov V Y, Chapman T, Loiseau P 2010 Phys. Plasmas 17 092704

    [14]

    Friou A, Benisti D, Gremillet L, Lefebvre E, Morice O, Siminos E, Strozzi D J 2013 Phys. Plasmas 20 103103

    [15]

    Montgomery D S, Cobble J A, Fernández J C, Focia R J, Johnson R P, Renard-LeGalloudec N, Rose H A, D A Russell 2002 Phys. Plasmas 9 2311

    [16]

    Liu Z J, Zhu S P, Cao L H, Zheng C Y 2007 Acta Phys. Sin. 56 7084 (in Chinese) [刘占军, 朱少平, 曹莉华, 郑春阳 2007 物理学报 56 7084]

    [17]

    Villasenor J, Buneman O 1992 Comput. Phys. Commun. 69 306

    [18]

    Wu H C 2011 arXiv: 1104.3163v1 [physics. plasm-ph]

    [19]

    Taflove A, Hagness C 2005 Computaional Electrodynamics: The Finite-Difference Time-Domain Method (Norwood: Artech House)

    [20]

    Strozzi D J, Williams E A, Langdon A B, Bers A 2007 Phys. Plasmas 14 013104

    [21]

    Brunner S, Valeo E J 2004 Phys. Rev. Lett. 93 145003

    [22]

    O’Neil T 1968 Phys. Fluids 8 2255

    [23]

    Vu H X, DuBois D F, Bezzerides B 2002 Phys. Plasmas 9 1745

    [24]

    Morales G L, O’Neil T M 1972 Phys. Rev. Lett. 28 417

计量
  • 文章访问数:  1986
  • PDF下载量:  383
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-04
  • 修回日期:  2013-12-02
  • 刊出日期:  2014-04-05

一维动理学数值模拟激光与等离子体的相互作用

  • 1. 华中科技大学, 强电磁与新技术国家重点实验室, 武汉 430074;
  • 2. 北京应用物理与计算数学研究所, 北京 100088

摘要: 利用一维(1D3V)、显式、全电磁、相对论粒子模拟代码研究动理学范畴内激光与等离子体相互作用中的受激拉曼散射,给出了粒子代码的控制方程及其数值离散的详细方案. 研究表明:动理学效应在受激拉曼散射不稳定性中十分重要;时间平均的反射率在阈值强度处跃升,在更高的激光强度处达到饱和;受激拉曼背向散射周期性地在次皮秒内爆发,离子效应延迟背向拉曼散射的发生;电子俘获导致了背向拉曼散射出现爆发;Langmuir波的非线性频移使得背向散射达到饱和.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回