搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气体压强及表面等离激元影响表面波等离子体电离发展过程的粒子模拟

陈兆权 夏广庆 刘明海 郑晓亮 胡业林 李平 徐公林 洪伶俐 沈昊宇 胡希伟

引用本文:
Citation:

气体压强及表面等离激元影响表面波等离子体电离发展过程的粒子模拟

陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟

PIC/MCC simulation of the ionization process of SWP influenced by gas pressure and SPP

Chen Zhao-Quan, Xia Guang-Qing, Liu Ming-Hai, Zheng Xiao-Liang, Hu Ye-Lin, Li Ping, Xu Gong-Lin, Hong Ling-Li, Shen Hao-Yu, Hu Xi-Wei
PDF
导出引用
  • 基于表面等离激元 (SPP) 的表面波等离子体 (SWP) 源, 具有高密度、低温度及高产率等优异性能, 其应用在电子器件微纳加工、材料改性等领域. 但由于SPP激励SWP放电的电离过程难于用理论分析和实验测量描述, 因而SWP源均匀稳定产生的电离发展过程一直未研究清晰. 本文以SWP放电的数值模拟为研究手段, 采用等离子体与电磁波相互作用的粒子模拟 (PIC) 方法, 结合蒙特卡罗碰撞 (MCC) 方法处理碰撞效应的优势, 研究气体压强影响电离过程的电磁能量耦合机理. 模拟结果表明SWP的高效产生是SPP的局域增强电场致使, 气体压强能够改变波模共振转换的出现时刻而影响了SWP的电离发展过程. 本文的研究成果展示了SPP维持SWP放电的电离过程, 可为下一代米级SWP源的参数优化提供设计建议.
    A surface-wave plasma (SWP) source based on surface plasmon polariton (SPP) has fine performances such as high density, low temperature, high production, and so on. It is applied in electronic device micro or nano processing, material modification, etc. Because the ionization of SWP heated by SPP is difficult to describe by theoretical analysis and experimental measurement, the ionization process of producing uniform stable SWP source is not yet well understood. The method in this paper is a numerical simulation of SWP discharges. The electromagnetic energy coupling mechanism of ionization process, influenced by gas pressure, which is studied by combining particle-in-cell (PIC) simulation of reciprocity between plasma and electromagnetic wave with Monte Carlo Collide (MCC) method in merit of dealing with particle collision. Simulated results suggest that the efficient production of SWP is induced by locally enhanced electric field of SPP, and the gas pressure influences the ionization process of SWP by altering the appearance time of wave-mode resonant conversion. Results of this paper show the ionization process of SWP discharge maintained by SPP, and further provide some advices for designing the parameter optimization of next generation meter-scale SWP source.
    • 基金项目: 国家自然科学基金(批准号:11105002);工业装备结构分析国家重点实验室开放基金(批准号:GZ1215);安徽高校省级自然科学研究项目(批准号:KJ2013A106);国家大学生创新训练计划项目(批准号:201210361058)和安徽理工大学博士科研启动基金资助的课题.
    • Funds: Project supported by the NationalNatural Science Foundation of China (Grant No. 11105002), the Open-End Fund of State Key Laboratory of Structural Analysis for Industrial Equipment (Grant No. GZ1215), the Natural Science Foundation for University in Anhui Province, China (Grant No. KJ2013A106), the Education Project of Creation and Innovation for College Students in China (Grant No. 201210361058), and the Doctoral Scientific Research Fund of AUST.
    [1]

    Sugai H, Ghanashev I, Nagatsu M 1998 Plasma Sources Sci. Technol. 7 192

    [2]

    Nagatsu M, Naito K, Ogino A, Nanko S 2006 Plasma Sources Sci. Technol. 15 37

    [3]

    Tian C, Nozawa T, Ishibasi K, Kameyama H, Morimoto T 2006 J. Vac. Sci. Technol. A 24 1421

    [4]

    Yasaka Y, Ishii N, Yamamoto T, Ando M, Takahashi M 2004 IEEE Trans. Plasma Sci. 32 101

    [5]

    Nagatsu M, Terashita F, Nonaka H, Xu L, Nagata T, Koide Y 2005 Appl. Phys. Lett. 86 211502

    [6]

    Xu L, Terashita F, Nonaka H, Ogino A, Nagata T, Koide Y, Nanko S, Kurawaki I, Nagatsu M 2006 J. Phys. D: Appl. Phys. 39 148

    [7]

    Kousaka H, Ono K, Umehara N, Sawada I, Ishibashi K 2006 Thin Solid Films 506-507 503

    [8]

    Wu T, Kou C 2005 Phys. Plasmas 12 103504

    [9]

    Xu X, Liu F, Zhou Q, Liang B, Liang Y, Liang R 2008 Appl. Phys. Lett. 92 011501

    [10]

    Wu C, Zhan R, Wen X, Huang W 2001 IEEE Trans. Plasma Sci. 29 13

    [11]

    Liang Y, Ou Q, Liang B, Liang R 2008 Chin. Phys. Lett. 25 1761

    [12]

    Liang B, Ou Q, Liang Y, Liang R 2007 Chin. Phys. 16 3732

    [13]

    Hu Y, Chen Z, Liu M, Hong L, Li P, Zheng X, Xia G, Hu X 2011 Chin. Phys. Lett. 28 115201

    [14]

    Chen Z, Liu M, Zhou Q, Hu Y, Yang A, Zhu L, Hu X 2011 Chin. Phys. Lett. 28 045201

    [15]

    Liu M, Sugai H, Hu X, Ishijima T, Jiang Z, Li B, Dan M 2006 Acta. Phys. Sin. 55 5905 (in Chinese) [刘明海, 菅井秀郎, 胡希伟, 石岛芳夫, 江中和, 李斌, 但敏 2006 物理学报 55 5905]

    [16]

    Chen Z, Liu M, Zhou P, Chen W, Lan C, Hu X 2008 Plasma Sci. Technol. 10 655

    [17]

    Chen Z, Liu M, Tang L, Hu P, Hu X 2009 J. Appl. Phys. 106 013314

    [18]

    Chen Z, Liu M, Tang L, Lv J, Wen Y, Hu X2009 J. Appl. Phys. 106 063304

    [19]

    Chen Z, Liu M, Lan C, Chen W, Luo Z, Hu X 2008 Chin. Phys. Lett. 25 4333

    [20]

    Chen Q, Aoyagi P H, Katsurai M 1999 IEEE Trans. Plasma Sci. 27 164

    [21]

    Toba T, Katsurai M 2002 IEEE Trans. Plasma Sci. 30 2095

    [22]

    Okamura Y, Yamamoto Y, Fujita K, Miyoshi T, Teramoto K, Kawaguchi H, Kagami S, Furukawa M 2007 J. Vac. Sci. Technol. A 25 816

    [23]

    Nagatsu M, Naito K, Ogino A, Ninomiya K, Nanko S 2005 Appl. Phys. Lett. 87 161501

    [24]

    Tatarova E, Dias F M, Henriques J, Ferreira C M 2005 IEEE Trans. Plasma Sci. 33 866

    [25]

    Henriques J, Tatarova E, Dias F M 2008 J. Appl. Phys. 103 103304

    [26]

    Chen Z, Liu M, Lan C, Chen W, Tang L, Luo Z, Yan B, Lv J, Hu X 2009 Chin. Phys. B 18 3484

    [27]

    Lan C, Lan C, Hu X, Chen Z, Liu M 2009 Chin. Phys. B 18 2412

    [28]

    Lan C, Chen Z, Liu M, Jiang Z, Hu X 2009 Plasma Sci. Technol. 11 66

    [29]

    Lan C, Hu X, Liu M 2011 Acta. Phys. Sin. 60 025205 (in Chinese) [蓝朝晖, 胡希伟, 刘明海 2011 物理学报 60 025205]

    [30]

    Jin X, Yang Z, Huang T 2007 Phys. Plasmas 14 113505

    [31]

    Jin X, Huang T, Liao P, Yang Z 2009 Acta. Phys. Sin. 58 5526 (in Chinese) [金晓林, 黄桃, 廖平, 杨中海 2009 物理学报 58 5526]

    [32]

    Liu M, Hu X, Yu G, Wu Q, Pan Y 2002 Plasma Sources Sci. Technol. 11 260

    [33]

    Boeuf J P, Chaudhury B, Zhu G 2010 Phys. Rev. Lett. 104 015002

    [34]

    Zhu G, Boeuf J P, Li J 2012 Acta. Phys. Sin. 61 235202 (in Chinese) [朱国强, Jean-Pierre Boeuf, 李进贤 2012 物理学报 61 235202]

    [35]

    Zhou Q, Dong Z, Chen J 2011 Acta. Phys. Sin. 60 125202 (in Chinese) [周前红, 董志伟, 陈京元 2011 物理学报 60 125202]

    [36]

    Yang J, Shi F, Yang T, Meng Z 2010 Acta. Phys. Sin. 59 8701 (in Chinese) [杨涓, 石峰, 杨铁链, 孟志强 2010 物理学报 59 8701]

    [37]

    Chen M, Mao G, Xia G, Yang J, Sun A 2012 Propulsion Technology 33 150 (in Chinese) [陈茂林, 毛根旺, 夏广庆, 杨涓, 孙安邦 2012 推进技术 33 150]

    [38]

    Chen Z, Liu M, Tang L, Lv J, Hu X 2010 Chin. Phys. Lett. 27 025205

    [39]

    Chen Z, Liu M, Hong L, Zhou Q, Cheng L, Hu X 2011 Phys. Plasmas 18 013505

    [40]

    Chen Z, Ye Q, Xia G, Hong L, Hu Y, Zheng X, Li P, Zhou Q, Hu X, Liu M 2013 Phys. Plasmas 20 033502

    [41]

    Chen Z, Liu M, Xia G, Huang Y 2012 IEEE Trans. Plasma Sci. 40 2861

    [42]

    Chen Z, Xia G, Zhou Q, Hu Y, Zheng X, Zhen Z, Hong L, Li P, Huang Y 2012 Rev. Sci. Instrum. 83 084701

    [43]

    Dong T, Ye K, Liu W 2012 Acta. Phys. Sin. 61 145202 (in Chinese) [董太源, 叶坤涛, 刘维清 2012 物理学报 61 145202]

  • [1]

    Sugai H, Ghanashev I, Nagatsu M 1998 Plasma Sources Sci. Technol. 7 192

    [2]

    Nagatsu M, Naito K, Ogino A, Nanko S 2006 Plasma Sources Sci. Technol. 15 37

    [3]

    Tian C, Nozawa T, Ishibasi K, Kameyama H, Morimoto T 2006 J. Vac. Sci. Technol. A 24 1421

    [4]

    Yasaka Y, Ishii N, Yamamoto T, Ando M, Takahashi M 2004 IEEE Trans. Plasma Sci. 32 101

    [5]

    Nagatsu M, Terashita F, Nonaka H, Xu L, Nagata T, Koide Y 2005 Appl. Phys. Lett. 86 211502

    [6]

    Xu L, Terashita F, Nonaka H, Ogino A, Nagata T, Koide Y, Nanko S, Kurawaki I, Nagatsu M 2006 J. Phys. D: Appl. Phys. 39 148

    [7]

    Kousaka H, Ono K, Umehara N, Sawada I, Ishibashi K 2006 Thin Solid Films 506-507 503

    [8]

    Wu T, Kou C 2005 Phys. Plasmas 12 103504

    [9]

    Xu X, Liu F, Zhou Q, Liang B, Liang Y, Liang R 2008 Appl. Phys. Lett. 92 011501

    [10]

    Wu C, Zhan R, Wen X, Huang W 2001 IEEE Trans. Plasma Sci. 29 13

    [11]

    Liang Y, Ou Q, Liang B, Liang R 2008 Chin. Phys. Lett. 25 1761

    [12]

    Liang B, Ou Q, Liang Y, Liang R 2007 Chin. Phys. 16 3732

    [13]

    Hu Y, Chen Z, Liu M, Hong L, Li P, Zheng X, Xia G, Hu X 2011 Chin. Phys. Lett. 28 115201

    [14]

    Chen Z, Liu M, Zhou Q, Hu Y, Yang A, Zhu L, Hu X 2011 Chin. Phys. Lett. 28 045201

    [15]

    Liu M, Sugai H, Hu X, Ishijima T, Jiang Z, Li B, Dan M 2006 Acta. Phys. Sin. 55 5905 (in Chinese) [刘明海, 菅井秀郎, 胡希伟, 石岛芳夫, 江中和, 李斌, 但敏 2006 物理学报 55 5905]

    [16]

    Chen Z, Liu M, Zhou P, Chen W, Lan C, Hu X 2008 Plasma Sci. Technol. 10 655

    [17]

    Chen Z, Liu M, Tang L, Hu P, Hu X 2009 J. Appl. Phys. 106 013314

    [18]

    Chen Z, Liu M, Tang L, Lv J, Wen Y, Hu X2009 J. Appl. Phys. 106 063304

    [19]

    Chen Z, Liu M, Lan C, Chen W, Luo Z, Hu X 2008 Chin. Phys. Lett. 25 4333

    [20]

    Chen Q, Aoyagi P H, Katsurai M 1999 IEEE Trans. Plasma Sci. 27 164

    [21]

    Toba T, Katsurai M 2002 IEEE Trans. Plasma Sci. 30 2095

    [22]

    Okamura Y, Yamamoto Y, Fujita K, Miyoshi T, Teramoto K, Kawaguchi H, Kagami S, Furukawa M 2007 J. Vac. Sci. Technol. A 25 816

    [23]

    Nagatsu M, Naito K, Ogino A, Ninomiya K, Nanko S 2005 Appl. Phys. Lett. 87 161501

    [24]

    Tatarova E, Dias F M, Henriques J, Ferreira C M 2005 IEEE Trans. Plasma Sci. 33 866

    [25]

    Henriques J, Tatarova E, Dias F M 2008 J. Appl. Phys. 103 103304

    [26]

    Chen Z, Liu M, Lan C, Chen W, Tang L, Luo Z, Yan B, Lv J, Hu X 2009 Chin. Phys. B 18 3484

    [27]

    Lan C, Lan C, Hu X, Chen Z, Liu M 2009 Chin. Phys. B 18 2412

    [28]

    Lan C, Chen Z, Liu M, Jiang Z, Hu X 2009 Plasma Sci. Technol. 11 66

    [29]

    Lan C, Hu X, Liu M 2011 Acta. Phys. Sin. 60 025205 (in Chinese) [蓝朝晖, 胡希伟, 刘明海 2011 物理学报 60 025205]

    [30]

    Jin X, Yang Z, Huang T 2007 Phys. Plasmas 14 113505

    [31]

    Jin X, Huang T, Liao P, Yang Z 2009 Acta. Phys. Sin. 58 5526 (in Chinese) [金晓林, 黄桃, 廖平, 杨中海 2009 物理学报 58 5526]

    [32]

    Liu M, Hu X, Yu G, Wu Q, Pan Y 2002 Plasma Sources Sci. Technol. 11 260

    [33]

    Boeuf J P, Chaudhury B, Zhu G 2010 Phys. Rev. Lett. 104 015002

    [34]

    Zhu G, Boeuf J P, Li J 2012 Acta. Phys. Sin. 61 235202 (in Chinese) [朱国强, Jean-Pierre Boeuf, 李进贤 2012 物理学报 61 235202]

    [35]

    Zhou Q, Dong Z, Chen J 2011 Acta. Phys. Sin. 60 125202 (in Chinese) [周前红, 董志伟, 陈京元 2011 物理学报 60 125202]

    [36]

    Yang J, Shi F, Yang T, Meng Z 2010 Acta. Phys. Sin. 59 8701 (in Chinese) [杨涓, 石峰, 杨铁链, 孟志强 2010 物理学报 59 8701]

    [37]

    Chen M, Mao G, Xia G, Yang J, Sun A 2012 Propulsion Technology 33 150 (in Chinese) [陈茂林, 毛根旺, 夏广庆, 杨涓, 孙安邦 2012 推进技术 33 150]

    [38]

    Chen Z, Liu M, Tang L, Lv J, Hu X 2010 Chin. Phys. Lett. 27 025205

    [39]

    Chen Z, Liu M, Hong L, Zhou Q, Cheng L, Hu X 2011 Phys. Plasmas 18 013505

    [40]

    Chen Z, Ye Q, Xia G, Hong L, Hu Y, Zheng X, Li P, Zhou Q, Hu X, Liu M 2013 Phys. Plasmas 20 033502

    [41]

    Chen Z, Liu M, Xia G, Huang Y 2012 IEEE Trans. Plasma Sci. 40 2861

    [42]

    Chen Z, Xia G, Zhou Q, Hu Y, Zheng X, Zhen Z, Hong L, Li P, Huang Y 2012 Rev. Sci. Instrum. 83 084701

    [43]

    Dong T, Ye K, Liu W 2012 Acta. Phys. Sin. 61 145202 (in Chinese) [董太源, 叶坤涛, 刘维清 2012 物理学报 61 145202]

  • [1] 张彩霞, 马向超, 张建奇. Au(111)薄膜表面等离激元和热载流子输运性质的理论研究. 物理学报, 2022, 71(22): 227801. doi: 10.7498/aps.71.20221166
    [2] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性. 物理学报, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [3] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [4] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析. 物理学报, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [5] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [6] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用. 物理学报, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [7] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法. 物理学报, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [8] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应. 物理学报, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [9] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [10] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [11] 王栋, 许军, 陈溢杭. 介电常数近零模式与表面等离激元模式耦合实现宽带光吸收. 物理学报, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [12] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [13] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [14] 李明, 陈阳, 郭光灿, 任希锋. 表面等离激元量子信息应用研究进展. 物理学报, 2017, 66(14): 144202. doi: 10.7498/aps.66.144202
    [15] 姜美玲, 郑立恒, 池骋, 朱星, 方哲宇. 阴极荧光在表面等离激元研究领域的应用. 物理学报, 2017, 66(14): 144201. doi: 10.7498/aps.66.144201
    [16] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [17] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [18] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟. 物理学报, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [19] 韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍. 局域态密度对表面等离激元特性影响的研究. 物理学报, 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
    [20] 刘明海, 菅井秀郎, 胡希伟, 石岛芳夫, 江中和, 李 斌, 但 敏. 大面积表面波等离子体的特性研究. 物理学报, 2006, 55(11): 5905-5908. doi: 10.7498/aps.55.5905
计量
  • 文章访问数:  6880
  • PDF下载量:  551
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-08
  • 修回日期:  2013-05-28
  • 刊出日期:  2013-10-05

/

返回文章
返回