搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介电常数近零模式与表面等离激元模式耦合实现宽带光吸收

王栋 许军 陈溢杭

引用本文:
Citation:

介电常数近零模式与表面等离激元模式耦合实现宽带光吸收

王栋, 许军, 陈溢杭

Broadband absorption caused by coupling of epsilon-near-zero mode with plasmon mode

Wang Dong, Xu Jun, Chen Yi-Hang
PDF
导出引用
  • 介电常数为零或近零模式在微纳结构中提供了一个新的方式调控光与物质的相互作用.本文首先利用金属圆盘阵列结构激发了表面等离激元共振,在共振频率处实现了光的局域效果;然后通过在金属-绝缘体-金属超表面微纳结构中加入掺杂半导体材料,利用上层金属圆盘阵列激发的表面等离激元共振诱导介电常数近零模式的产生,从而使得介电常数近零模式与表面等离激元模式发生耦合,在中红外波段实现了一个470 nm的宽带吸收效果;数值模拟结果显示,在宽带吸收处存在光场的强局域效果.与窄带吸收相比,宽带吸收有更广泛的应用,比如吸收器、传感器、滤波器、微测辐射热计、光电探测器、相干热发射器、太阳能电池、指纹识别和能量收集装置等.
    Epsilon-near-zero mode provides a new path for tailoring light-matter interactions on a nanoscale because of its unique characteristics and ability to be used in many scientific fields. Among these applications, broadband absorption has aroused the considerable interest in photonic research. In this paper, we first show that the surface plasmon resonance is excited by the metal disk array structure without dysprosium-doped cadmium oxide nanolayer, and the structure achieves the local effect of light at a certain wavelength. In addition, in order to be able to use this new technique to achieve a broadband absorption, we take advantage of the surface plasmon resonance to excite the epsilonnear-zero mode which cannot be excited under normal incidence but has a very large density of states. Then, we show that over one order of magnitude increase in the absorption band of a periodically patterned metal-dielectric-metal structure can be obtained by integrating a dysprosium-doped cadmium oxide material into the insulating dielectric gap region. We analyze the absorption band at mid-infrared wavelength comprising plasmonic metamaterial resonators and epsilon-near-zero modes supported by dysprosium-doped cadmium oxide material. The two resonance modes lie in the weak coupling regime and achieve a 470 nm wideband light absorption. Finally, we perform numerical simulations by using the finite-difference-time-domain method to investigate the relationship between the epsilon-near-zero mode and the surface plasmon resonance mode. It is sure that the whole broadband mightily has the local effect of light. The epsilon-near-zero mode mainly is excited at the short wavelength of the broadband, and the surface plasmon resonance mode mainly focuses on long wavelength of the broadband. The simulation demonstrates that the two resonance modes are coupled to achieve a broadband absorption. Additionally, the dielectric constants are tunable by doping density, resulting in plasma frequency change, where the real part of the dielectric constant becomes zero at plasma frequency. Broadband absorption theoretically can be realized in any band of mid-infrared wavelength due to plasma frequency changing. Broadband absorption relaxes the single wavelength condition in previous absorption studies, and compared with the narrowband absorption, broadband absorption at present has many applications, such as in absorbers, sensors, filters, coherent thermal emitters, microbolometers, photodectors, solar cells, fingerprint recognition, energy harvesting devices, etc.
      通信作者: 陈溢杭, yhchen@scnu.edu.cn
    • 基金项目: 广东省自然科学基金(批准号:2015A030311018,2017A030313035)资助的课题.
      Corresponding author: Chen Yi-Hang, yhchen@scnu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2015A030311018, 2017A030313035).
    [1]

    Qu C, Ma S J, Hao J M, Qiu M, Li X, Xiao S Y, Miao Z Q, Dai N, He Q, Sun S L, Zhou L 2015 Phys. Rev. Lett. 115 235503

    [2]

    Hao J, Ren Q, An Z, Huang X, Chen Z, Qiu M 2009 Phys. Rev. A 80 023807

    [3]

    Pors A, Nielsen M G, Bozhevolnyi S I 2013 Opt. Lett. 38 513

    [4]

    Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908

    [5]

    Pors A, Bozhevolnyi S I 2013 Opt. Express 21 27438

    [6]

    Hu C G, Zhao Z Y, Chen X N, Luo X G 2009 Opt. Express 17 11039

    [7]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342

    [8]

    Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 98

    [9]

    Yu N, Capasso F 2014 Nat. Mater. 13 139

    [10]

    Sun S L, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S Y, Kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223

    [11]

    Pors A, Nielsen M G, Eriksen R L, Bozhevolnyi S I 2013 Nano Lett. 13 829

    [12]

    Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Liao C Y, Hsu W L, Lin H T, Sun S L, Zhou L, Liu A Q, Tsai D P 2014 Nano Lett. 14 225

    [13]

    Hendrickson J, Guo J, Zhang B, Buchwald W, Soref R 2012 Opt. Lett. 37 371

    [14]

    Hendrickson J R, Vangala S, Dass C, Gibson R, Goldsmith J, Leedy K 2018 ACS Photonics 5 3

    [15]

    Campione S, Wendt J R, Keeler G A, Luk T S 2016 ACS Photonics 3 293

    [16]

    Sachet E, Shelton C T, Harris J S, Gaddy B E, Irving D L, Curtarolo S 2015 Nat. Mater. 1 414

    [17]

    Campione S, Liu S, Benz A, Klem J F, Sinclair M B, Brener I 2015 Phys. Rev. Applied 4 044011

    [18]

    Xu Y D, Chen H Y 2011 Appl. Phys. Lett. 98 113501

    [19]

    Xu Y D, Chan C T, Chen H Y 2015 Sci. Rep. 5 8681

    [20]

    Fu Y Y, Xu Y D, Chen H Y 2016 Opt. Express 24 1648

    [21]

    Campione S, Brener I, Marquier F 2015 Phys. Rev. B 91 121408

    [22]

    Al A M, Silveirinha R G, Salandrino A, Engheta N 2007 Phys. Rev. B 75 155410

    [23]

    Kinsey N, Devault C, Kim J, Ferrera M, Shalaev V M, Boltasseva A 2015 Optica 2 616

    [24]

    Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264

    [25]

    Campione S, Kim I, De C D, Keeler G A, Luk T S 2016 Opt. Express 24 18782

    [26]

    Hendrickson J R, Vangala S, Dass C K, Gibson R, Leedy K, Walker D, Cleary J W, Luk T S, Guo J P 2018 arXiv:1801. 03139[physics. optics]

    [27]

    Badsha M A, Jun Y C, Chang K H 2014 Opt. Commun. 332 206

  • [1]

    Qu C, Ma S J, Hao J M, Qiu M, Li X, Xiao S Y, Miao Z Q, Dai N, He Q, Sun S L, Zhou L 2015 Phys. Rev. Lett. 115 235503

    [2]

    Hao J, Ren Q, An Z, Huang X, Chen Z, Qiu M 2009 Phys. Rev. A 80 023807

    [3]

    Pors A, Nielsen M G, Bozhevolnyi S I 2013 Opt. Lett. 38 513

    [4]

    Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908

    [5]

    Pors A, Bozhevolnyi S I 2013 Opt. Express 21 27438

    [6]

    Hu C G, Zhao Z Y, Chen X N, Luo X G 2009 Opt. Express 17 11039

    [7]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342

    [8]

    Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 98

    [9]

    Yu N, Capasso F 2014 Nat. Mater. 13 139

    [10]

    Sun S L, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S Y, Kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223

    [11]

    Pors A, Nielsen M G, Eriksen R L, Bozhevolnyi S I 2013 Nano Lett. 13 829

    [12]

    Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Liao C Y, Hsu W L, Lin H T, Sun S L, Zhou L, Liu A Q, Tsai D P 2014 Nano Lett. 14 225

    [13]

    Hendrickson J, Guo J, Zhang B, Buchwald W, Soref R 2012 Opt. Lett. 37 371

    [14]

    Hendrickson J R, Vangala S, Dass C, Gibson R, Goldsmith J, Leedy K 2018 ACS Photonics 5 3

    [15]

    Campione S, Wendt J R, Keeler G A, Luk T S 2016 ACS Photonics 3 293

    [16]

    Sachet E, Shelton C T, Harris J S, Gaddy B E, Irving D L, Curtarolo S 2015 Nat. Mater. 1 414

    [17]

    Campione S, Liu S, Benz A, Klem J F, Sinclair M B, Brener I 2015 Phys. Rev. Applied 4 044011

    [18]

    Xu Y D, Chen H Y 2011 Appl. Phys. Lett. 98 113501

    [19]

    Xu Y D, Chan C T, Chen H Y 2015 Sci. Rep. 5 8681

    [20]

    Fu Y Y, Xu Y D, Chen H Y 2016 Opt. Express 24 1648

    [21]

    Campione S, Brener I, Marquier F 2015 Phys. Rev. B 91 121408

    [22]

    Al A M, Silveirinha R G, Salandrino A, Engheta N 2007 Phys. Rev. B 75 155410

    [23]

    Kinsey N, Devault C, Kim J, Ferrera M, Shalaev V M, Boltasseva A 2015 Optica 2 616

    [24]

    Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264

    [25]

    Campione S, Kim I, De C D, Keeler G A, Luk T S 2016 Opt. Express 24 18782

    [26]

    Hendrickson J R, Vangala S, Dass C K, Gibson R, Leedy K, Walker D, Cleary J W, Luk T S, Guo J P 2018 arXiv:1801. 03139[physics. optics]

    [27]

    Badsha M A, Jun Y C, Chang K H 2014 Opt. Commun. 332 206

  • [1] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合. 物理学报, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [2] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [4] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [5] 吕晓龙, 陆浩然, 郭云胜. Mie谐振耦合的亚波长金属孔宽带高透射传输. 物理学报, 2021, 70(3): 034201. doi: 10.7498/aps.70.20201121
    [6] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性. 物理学报, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [7] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [8] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [9] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [10] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [11] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [12] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [13] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [14] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证. 物理学报, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [15] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [16] 王立文, 娄淑琴, 陈卫国, 鹿文亮, 王鑫. 一种覆盖全通信波段的新型宽带偏振无关双芯光纤定向耦合器的研究. 物理学报, 2012, 61(15): 154207. doi: 10.7498/aps.61.154207
    [17] 杨岳彬, 左文龙, 保延翔, 刘树郁, 李龙飞, 张进修, 熊小敏. 力学共振吸收谱探测耦合振动模式. 物理学报, 2012, 61(20): 200509. doi: 10.7498/aps.61.200509
    [18] 王宝燕, 徐伟, 邢真慈. 外界电场激励下的耦合FitzHugh-Nagumo神经元系统的放电节律研究. 物理学报, 2009, 58(9): 6590-6595. doi: 10.7498/aps.58.6590
    [19] 王晓慧, 吕志伟, 林殿阳, 王 超, 汤秀章, 龚 坤, 单玉生. 宽带KrF激光抽运的受激布里渊散射反射率研究. 物理学报, 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
    [20] 何国华, 张俊祥, 叶莉华, 崔一平, 李振华, 来建成, 贺安之. 一种新型有机染料的宽带双光子吸收和光限幅特性的研究. 物理学报, 2003, 52(8): 1929-1933. doi: 10.7498/aps.52.1929
计量
  • 文章访问数:  8149
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-06
  • 修回日期:  2018-07-25
  • 刊出日期:  2019-10-20

/

返回文章
返回