-
本文提出一种具有宽波段自发辐射增强性能的金属基底上光学偶极纳米天线,实现的总辐射速率与远场辐射速率增强因子分别达到5454、1041,在近红外波段,自发辐射增强(Purcell因子超过1000)波长范围达到260nm,并且能够实现远场定向辐射.为了阐明天线性能背后的物理机制,本文考虑天线臂上表面等离激元激发和多重散射的直观物理过程,基于Maxwell方程组第一性原理,建立了一个半解析模型,能够全面复现天线的辐射特性,包括总辐射速率、远场辐射速率、远场辐射方向图等.该模型提供了一个直观的物理图像,即在模型导出的两个相位匹配条件下,表面等离激元在天线臂上形成了一对Fabry-Perot共振获得增强,然后传播到纳米间隙内点辐射源位置和散射到自由空间,由此分别提高了总辐射速率和远场辐射速率.并且,这一对Fabry-Perot共振产生了一对相互靠近的谐振峰,由此形成了宽波段自发辐射增强.本文提出的偶极纳米天线可以应用于荧光增强、拉曼散射增强及高速、高亮度纳米光源等领域,所提出的模型可用于光学天线的物理理解和直观设计.Optical nanoantennas can achieve electromagnetic-field enhancement under far-field excitation or spontaneous-emission enhancement under excitation by radiating emitters. Among them, nanoantennas on a metallic substrate (i.e., the so-called nanoparticle-on-mirror antennas) have drawn great research interests due to their ease in forming metallic gaps of sizes down to a few nanometers or even subnanometer. Here we propose an optical dipole nanoantenna on a metallic substrate with a broadband enhancement of spontaneous emission. Its total and radiative emission-rate enhancement factors can be up to 5454 and 1041, respectively. In the near-infrared band, the wavelength range of spontaneous-emission enhancement (Purcell factor over 1000) can reach 260nm. By changing the width of the slit between the two antenna arms and changing the length of the antenna arms, the spontaneous-emission enhancement bandwidth and enhancement factors can be adjusted, respectively, which brings great freedom and simplicity to the design process. The antenna can achieve a strong far-field radiation within a central anglular zone (polar angle θ≤60°) corresponding to a certain numerical aperture of objective lens, and therefore can increase the intensity of the fluorescence collected by the objective lens. Based on the above performances, the antenna can provide a broadband enhancement of spontaneous emission for fluorescent molecules or quantum dots (whose fluorescence spectrum usually covers a certain wavelength range), which is of great significance for applications such as high-speed and super-bright nanoscale light sources and high-sensitivity fluorescent-molecule sensing.
To clarify the underlying physical mechanisms, we build up a semi-analytical model by considering an intuitive excitation and multiple-scattering process of surface plasmon polaritons (SPPs) that propagate along the antenna arms. All the parameters used in the model (such as the SPP scattering coefficients) are obtained via rigorous calculations based on the first principle of Maxwell’s equations without any fitting process, which ensures that the model has a solid electromagnetic foundation and can provide quantitative predictions. The SPP model can comprehensively reproduce all the radiation properties of the antenna, such as the total and radiative emission rates and the far-field radiation pattern. Two phase-matching conditions are derived from the model for predicting the antenna resonance, and show that under these conditions, the SPPs on the antenna arms form a pair of Fabry-Perot resonance and therefore are enhanced, and the enhanced SPPs propagate to the emitter in the nanogap (or scattered into the free space), so as to enhance the total spontaneous emission rate (or the far-field radiative emission rate). Besides, this pair of Fabry-Perot resonance result in a pair of resonance peaks close to each other, which then forms the broadband enhancement of spontaneous emission.-
Keywords:
- optical nanoantenna /
- spontaneous-emission enhancement /
- surface plasmon polariton /
- semi-analytical model
-
[1] Mühlschlegel P, Eisler H J, Martin O J F, Hecht B, Pohl D W 2005 Science 308 1607
[2] Novotny L, Van Hulst N 2011 Nat. Photonics 5 83
[3] Pelton M 2015 Nat. Photonics 9 427
[4] Şendur K, Baran E 2009 Appl. Phys. B 96 325
[5] Sederberg S, Elezzabi A Y. 2011 Opt. Express 19 10456
[6] El-Toukhy Y M, Hussein M, Hameed M F O, Obayya S S A 2018 Plasmonics 13 503
[7] Aizpurua J, Bryant G W, Richter L J, García de Abajo F J, Kelley B K, Mallouk T 2005 Phys. Rev. B 71 235420
[8] Yong Z D, Zhang S L, Dong Y J, He S L 2015 Prog. Electromagn. Res. 153 123
[9] Lu G W, Liu J, Zhang T Y, Shen H M, Perriat P, Martini M, Tillement O, Gu Y, He Y B, Wang Y W, Gong Q H 2013 Nanoscale 5 6545
[10] Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J N, Smith D R, Mikkelsen M H 2014 Nat. Photonics 8 835
[11] Hoang T B, Akselrod G M, Argyropoulos C, Huang J, Smith D R, Mikkelsen M H 2015 Nat. Commun. 6 7788
[12] Kinkhabwala A, Yu Z H, Fan S H, Avlasevich Y, Müllen K, Moerner W E 2009 Nat. Photonics 3 654
[13] Muskens O L, Giannini V, Sánchez-Gil J A, Gómez Rivas J 2007 Nano. Lett. 7 2871
[14] Baibakov M, Patra S, Claude J-B, Moreau A, Lumeau J, Wenger J 2019 ACS Nano 13 8469
[15] Barulin A, Claude J-B, Patra S, Bonod N, Wenger J 2019 Nano. Lett. 19 7434
[16] Rycenga M, Xia X H, Moran C H, Zhou F, Qin D, Li Z Y, Xia Y N 2011 Angew. Chem. Int. Edit. 50 5473
[17] Nie S, Emory S R 1997 Science 275 1102
[18] Lodahl P, Mahmoodian S, Stobbe S 2015 Rev. Mod. Phys. 87 347
[19] Tsakmakidis K L, Boyd R W, Yablonovitch E, Zhang X 2016 Opt. Express 24 17916
[20] Suh J Y, Kim C H, Zhou W, Huntington M D, Co D T, Wasielewski M R, Odom T W 2012 Nano. Lett. 12 5769
[21] Ma R-M, Oulton R F, Sorger V J, Zhang X 2013 Laser. Photonics. Rev. 7 1
[22] Harutyunyan H, Volpe G, Quidant R, Novotny L 2012 Phys. Rev. Lett. 108 217403
[23] Butet J, Martin O J F 2015 Plasmonics 10 203
[24] Gong T X, Guan F, Wei Z J, Huang W, Zhang X S. 2021 Front. Phys-Lausanne 9 225
[25] Zhang W H, Huang L N, Santschi C, Martin O J F 2010 Nano. Lett. 10 1006
[26] Fischer H, Martin O J F 2008 Opt. Express 16 9144
[27] Yong Z D, Gong C S, Dong Y J, Zhang S L, He S L 2017 RSC Adv. 7 2074
[28] Trojak O J, Park S I, Song J D, Sapienza L 2017 Appl. Phys. Lett. 111 021109
[29] Zarrabi F B, Naser-Moghadasi M, Heydari S, Maleki M, Arezomand A S 2016 Opt. Commun. 371 34
[30] Lumdee C, Yun B F, Kik P G 2014 ACS Photonics 1 1224
[31] Baumberg J J, Aizpurua J, Mikkelsen M H, Smith D R 2019 Nat. Mater. 18 668
[32] Huang S X, Ming T, Lin Y X, Ling X, Ruan Q F, Palacios T, Wang J F, Kong J, Dresselhaus M, Kong J 2016 Small 12 5190
[33] Huang Y, Ma L W, Hou M J, Li J H, Xie Z, Zhang Z J 2016 Sci. Rep. 6 30011
[34] Armstrong R E, van Liempt J C, Zijlstra P 2019 J. Phys. Chem. C 123 25801
[35] Huang Y, Ma L W, Li J H, Zhang Z J 2017 Nanotechnology 28 105203
[36] Purcell E M 1946 Phys. Rev. 69 681
[37] Lakowicz J R, Fu Y 2009 Laser. Photonics. Rev. 3 221
[38] Agio M 2012 Nanoscale 4 692
[39] Li L, Hutter T, Steiner U, Mahajan S 2013 Analyst 138 4574
[40] Yoon J K, Kim K, Shin K S 2009 J. Phys. Chem. C 113 1769
[41] Alu A, Engheta N 2008 Phys. Rev. Lett. 101 043901
[42] Eggleston M S, Messer K, Zhang L M, Yablonovitch E, Wu M C 2015 Proc. Natl. Acad. Sci. USA 112 1704
[43] Fernandez-Garcia R, Rahmani M, Hong M, Maier S A, Sonnefraud Y 2013 Opt. Express 21 12552
[44] Calderón J, Álvarez J, Martinez-Pastor J, Hill D 2015 Plasmonics 10 703
[45] Cooper C T, Rodriguez M, Blair S, Shumaker-Parry J S 2014 J. Phys. Chem. C 118 1167
[46] Jia H, Yang F, Zhong Y, Liu H 2016 Photon. Res. 4 293
[47] Lalanne P, Yan W, Vynck K, Sauvan C, Hugonin J-P 2018 Laser Photon. Rev. 12 1700113
[48] Sauvan C, Hugonin J P, Maksymov I S, Lalanne P 2013 Phys. Rev. Lett. 110 237401
[49] Ching E S C, Leung P T, Maassen van den Brink A, Tong S S, Young K 1998 Rev. Mod. Phys. 70 1545
[50] Della Valle G, Søndergaard T, Bozhevolnyi S I 2008 Opt. Express 16 6867
[51] Taminiau T H, Stefani F D, van Hulst N F 2011 Nano. Lett. 11 1020
[52] Cubukcu E, Capasso F 2009 Appl. Phys. Lett. 95 201101
[53] Hasan S B, Filter R, Ahmed A, Vogelgesang R, Gordon R, Rockstuhl C, Lederer F 2011 Phys. Rev. B 84 195405
[54] Kim D, Jeong K-Y, Kim J, Ee H-S, Kang J-H, Park H-G Seo M-K 2017 Phys. Rev. Appl. 8 054024
[55] Chandran A, Barnard E S, White J S, Brongersma M L 2012 Phys. Rev. B 85 085416
[56] Filter R, Qi J, Rockstuhl C, Ledere F 2012 Phys. Rev. B 85 125429
[57] Wan J, Zhu J, Zhong Y, Liu H 2018 J. Opt. Soc. Am. A 35 880
[58] Jia H, Liu H, Zhong Y 2015 Sci. Rep. 5 8456
[59] Zhai X, Wang N, Zhong Y, Liu H 2020 IEEE J. Sel. Top. Quantum Electron. 27 4600815
[60] Kotal S, Artioli A, Wang Y, Osterkryger A D, Finazzer M, Fons R, Claudon J, Bleuse J, Gérard J-M, 2021 Appl. Phys. Lett. 118 194002
[61] Yang J, Kong F M, Li K, Sheng S W 2015 Opt. Commun. 342 230
[62] Vesseur E J R, de Abajo F J G, Polman A 2010 Phys. Rev. B 82 165419
[63] Edwards A P, Adawi A M 2014 J. Appl. Phys. 115 053101
[64] Palik E D 1991 Handbook of Optical Constants of Solids, Part II (San Diego: Academic)
[65] Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002
[66] The calculation is performed with an in-house software: Haitao Liu, DIF CODE for Modeling Light Diffraction in Nanostructures (Nankai University, Tianjin, 2010).
[67] Hugonin J P, Lalanne P 2005 J. Opt. Soc. Am. A 22 1844
[68] Vassallo C 1991 Optical Waveguide Concepts (Amsterdam: Elsevier)
[69] Chang D E, Sørensen A S, Hemmer P R, Lukin M D 2007 Phys. Rev. B 76 035420
[70] Li L 1996 J. Opt. Soc. Am. A 13 1024
[71] Li L 2014 “Fourier Modal Method,” in Gratings: Theory and Numeric Applications, Popov E ed., Second Revisited Edition (Marseille: Institut Fresnel, Aix Marseille Université) pp 573-574
[72] Liu H 2013 Opt. Express 21 24093
[73] Ortega J M, Rheinboldt W C 1970 Iterative Solution of Nonlinear Equations in Several Variables (New York and London: Academic)
[74] Li Y, Liu H, Jia H, Bo F, Zhang G, Xu J 2014 J. Opt. Soc. Am. A 31 2459
[75] Yang J, Hugonin J-P, Lalanne P 2016 ACS Photonics 3 395
计量
- 文章访问数: 2920
- PDF下载量: 41
- 被引次数: 0