搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维金属光栅嵌入磁性介质纳米结构下的横向磁光克尔效应的增强

陈聿 刘垄 黄忠 屠林林 詹鹏

引用本文:
Citation:

一维金属光栅嵌入磁性介质纳米结构下的横向磁光克尔效应的增强

陈聿, 刘垄, 黄忠, 屠林林, 詹鹏

Great enhancement of transversal magneto-optical Kerr effect for magnetic dielectric film embedded by one-dimensional metallic grating

Chen Yu, Liu Long, Huang Zhong, Tu Lin-Lin, Zhan Peng
PDF
导出引用
  • 本文在一维金属光栅嵌入磁性介质的体系中实现了横向磁光克尔效应的增强. 通过最优化金属光栅的嵌入深度来有效激发磁性介质中的波导模式与金属条带上的局域等离激元模式, 从而使横向磁光克尔效应的响应得到巨大增强. 本文提出了一种用于增强横向磁光克尔效应的新型等离激元微纳结构, 这种结构可以应用于高性能磁光器件的设计.
    Transversal magneto-optical Kerr effect (TMOKE) has potential practical applications, such as biosensors, magnetic imaging, and date storage. However, these potential applications have been restricted by its very weak response (about 0.1%) in natural ferromagnetic metal material such as Fe, Co and Ni. Fortunately, with the development of the nanofabrication techniques, surface plasmons (SPs) are one of the effective strategies to solve this problem due to their special ability to manipulate light on a nanoscale and concentrate the electromagnetic energy near the metal/dielectric interface. Herein, in order to enhance the TMOKE response, we propose that a periodic gold strips array is embedded into a magnetic dielectric film of bismuth iron garnet (BIG), which is supported by a quartz substrate. Using the finite element method, we numerically study the optical properties of our proposed microstructure and the corresponding evolution of the TMOKE responses due to the coupled optical modes dependent on the structural parameters. Particularly, by optimizing the embedded depth of metal grating, a dramatic enhancement of TMOKE response (about 3.6%) is achieved when the embedded depth reaches up to 80 nm, accompanied with a high transmissivity about 22.6%, which is actually three time larger than that in the case that the gold strips are just patterned on the surface of the BIG film. As the embedding depth increases further, the TMOKE response will be weak. The relationship between the TMOKE response and the coupling efficiency of LSP resonance of the gold stripes and the waveguide (WG) mode supported by the BIG film are also discussed systematically. As the embedding depth increases up to 80 nm gradually, the coupling of the WG mode in BIG film with the LSP mode of the individual gold stripe becomes much stronger and forms a highly efficient Fano resonance, which leads to the fact that most of the electromagnetic field is localized in the BIG film and strong interaction with the BIG magnetic dielectric film, and thus, an enhancement of TMOKE response can be observed. However, when the embedded depth increases further, the uniformity of BIG film will be broken. In this case, WG mode cannot be supported by BIG film very well any more at the wavelength corresponding to excitation of the LSP, which results in a weakly coupling efficiency between LSP and WG mode. In this case, the Fano resonance cannot be formed and rare electromagnetic field can be localized in the BIG film, leading to a very weak light-magnetic dielectric film interaction and the weak TMOKE response. Our study proposes a new method to realize the amplification of weak TMOKE response by utilizing the plasmonic microstructure, which might have a potential application to designing the high-efficiency magneto-optical devices.
      通信作者: 詹鹏, zhanpeng@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274160)和国家自然科学基金重大研究计划(批准号:91221206)资助的课题.
      Corresponding author: Zhan Peng, zhanpeng@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274160) and the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91221206).
    [1]

    Liu G Q, Le Z Q, Shen D F 2001 Magnetooptics (Shanghai: Shanghai Science and Technology Press) p1 (in Chinese) [刘公强, 乐志强, 沈德芳 2001 磁光学(上海: 上海科学技术出版社)第1页]

    [2]

    Aoshima K, Funabashi N, Machida K, Miyamoto Y, Kuga K, Ishibashi T, Shimidzu N, Sato F 2010 J. Display Technol. 6 374

    [3]

    Mitsuteru I, Miguel L, Alexander V B 2013 Magetophotonics (Berlin Heidelberg: Springer-Verlag) p63

    [4]

    Fang K J, Yu Z F, Liu V, Fan S H 2011 Opt. Lett. 36 4254

    [5]

    Koerdt C, Rikken G L J A, Petrov E P 2003 Appl. Phys. Lett. 82 1538

    [6]

    Kostylev N, Maksymov I S, Adeyeye A O, Samarin S, Kostylev M, Williams J F 2013 Appl. Phys. Lett. 102 121907

    [7]

    Wang Z L 2009 Progress in Physics 29 287 (in Chinese) [王振林 2009 物理学进展 29 287]

    [8]

    Grunin A A, Zhdanov A G, Ezhov A A, Ganshina E A, Fedyanin A A 2010 Appl. Phys. Lett. 97 261908

    [9]

    Newman D M, Wears M L, Matelon R J, Hooper I R 2008 J. Phys. Condens. Matter 20 345230

    [10]

    Sapozhnikov M V, Gusev S A, Troitskii B B, Khokhlova L V 2011 Opt. Lett. 36 4197

    [11]

    Armelles G, Bgonzlez-Daz J, Garca-Martn A, Garca-Martn J M, Cebollada A, Gonzlez M U, Acimovic S, Cesario J, Quidant R, Badenes G 2008 Opt. Express 16 16104

    [12]

    Clavero C, Yang K, Skuza J R, Lukaszew R A 2010 Opt. Express 18 7743

    [13]

    Clavero C, Yang K, Skuza J R, Lukaszew R A 2010 Opt. Lett. 35 1557

    [14]

    Belotelov V I, Akimov I A, Pohl M, Kotov V A, Kasture S, Vengurlekar A S, Gopal A V, Yakovlev D R, Zvezdin A K, Bayer M 2011 Nat. Nanotechnol. 6 370

    [15]

    Kreilkamp L E, Belotelov V I, Chin J Y, Neutzner S, Dregely D, Wehlus T, Akimov I A, Bayer M, Stritzker B, Giessen H 2013 Phys. Rev. X 3 041019

    [16]

    Linden S, Kuhl J, Giessen H 2001 Phys. Rev. Lett. 86 4688

    [17]

    Christ A, Tikhodeev S G, Gippius N A, Kuhl J, Giessen H 2003 Phys. Rev. Lett. 91 183901

    [18]

    Zhang J, Cai L K, Bai W L, Song G F 2010 Opt. Lett. 35 3408

    [19]

    Pohl M, Kreilkamp L E, Belotelov V I, Akimov I A, Kalish A N, Khokhlov N E, Yallapragada V J, Gopal A V, Nur-E-Alam M, Vasiliev M, Yakovlev D R, Alameh K, Zvezdin A K, Bayer M 2013 New J. Phys. 15 075024

    [20]

    Grunin A A, Sapoletova N A, Napolskii K S, Eliseev A A, Fedyanin A A 2012 J. Appl. Phys. 111 07A948

    [21]

    Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander Jr R W, Ward C A 1983 Appl. Opt. 22 1099

  • [1]

    Liu G Q, Le Z Q, Shen D F 2001 Magnetooptics (Shanghai: Shanghai Science and Technology Press) p1 (in Chinese) [刘公强, 乐志强, 沈德芳 2001 磁光学(上海: 上海科学技术出版社)第1页]

    [2]

    Aoshima K, Funabashi N, Machida K, Miyamoto Y, Kuga K, Ishibashi T, Shimidzu N, Sato F 2010 J. Display Technol. 6 374

    [3]

    Mitsuteru I, Miguel L, Alexander V B 2013 Magetophotonics (Berlin Heidelberg: Springer-Verlag) p63

    [4]

    Fang K J, Yu Z F, Liu V, Fan S H 2011 Opt. Lett. 36 4254

    [5]

    Koerdt C, Rikken G L J A, Petrov E P 2003 Appl. Phys. Lett. 82 1538

    [6]

    Kostylev N, Maksymov I S, Adeyeye A O, Samarin S, Kostylev M, Williams J F 2013 Appl. Phys. Lett. 102 121907

    [7]

    Wang Z L 2009 Progress in Physics 29 287 (in Chinese) [王振林 2009 物理学进展 29 287]

    [8]

    Grunin A A, Zhdanov A G, Ezhov A A, Ganshina E A, Fedyanin A A 2010 Appl. Phys. Lett. 97 261908

    [9]

    Newman D M, Wears M L, Matelon R J, Hooper I R 2008 J. Phys. Condens. Matter 20 345230

    [10]

    Sapozhnikov M V, Gusev S A, Troitskii B B, Khokhlova L V 2011 Opt. Lett. 36 4197

    [11]

    Armelles G, Bgonzlez-Daz J, Garca-Martn A, Garca-Martn J M, Cebollada A, Gonzlez M U, Acimovic S, Cesario J, Quidant R, Badenes G 2008 Opt. Express 16 16104

    [12]

    Clavero C, Yang K, Skuza J R, Lukaszew R A 2010 Opt. Express 18 7743

    [13]

    Clavero C, Yang K, Skuza J R, Lukaszew R A 2010 Opt. Lett. 35 1557

    [14]

    Belotelov V I, Akimov I A, Pohl M, Kotov V A, Kasture S, Vengurlekar A S, Gopal A V, Yakovlev D R, Zvezdin A K, Bayer M 2011 Nat. Nanotechnol. 6 370

    [15]

    Kreilkamp L E, Belotelov V I, Chin J Y, Neutzner S, Dregely D, Wehlus T, Akimov I A, Bayer M, Stritzker B, Giessen H 2013 Phys. Rev. X 3 041019

    [16]

    Linden S, Kuhl J, Giessen H 2001 Phys. Rev. Lett. 86 4688

    [17]

    Christ A, Tikhodeev S G, Gippius N A, Kuhl J, Giessen H 2003 Phys. Rev. Lett. 91 183901

    [18]

    Zhang J, Cai L K, Bai W L, Song G F 2010 Opt. Lett. 35 3408

    [19]

    Pohl M, Kreilkamp L E, Belotelov V I, Akimov I A, Kalish A N, Khokhlov N E, Yallapragada V J, Gopal A V, Nur-E-Alam M, Vasiliev M, Yakovlev D R, Alameh K, Zvezdin A K, Bayer M 2013 New J. Phys. 15 075024

    [20]

    Grunin A A, Sapoletova N A, Napolskii K S, Eliseev A A, Fedyanin A A 2012 J. Appl. Phys. 111 07A948

    [21]

    Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander Jr R W, Ward C A 1983 Appl. Opt. 22 1099

  • [1] 肖勇, 曹雨生. 基于浸入界面方法的平面波导模式分析. 物理学报, 2023, 72(14): 140201. doi: 10.7498/aps.72.20230595
    [2] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [3] 祁云平, 张婷, 郭嘉, 张宝和, 王向贤. 基于乙醇密封共振腔金属-介质-金属波导的高性能温度和折射率两用传感器. 物理学报, 2020, 69(16): 167301. doi: 10.7498/aps.69.20200405
    [4] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [5] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应. 物理学报, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [6] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [7] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [8] 汪涵聪, 李志鹏. 表面增强光学力与光操纵研究进展. 物理学报, 2019, 68(14): 144101. doi: 10.7498/aps.68.20190606
    [9] 王善江, 苏丹, 张彤. 表面等离激元光热效应研究进展. 物理学报, 2019, 68(14): 144401. doi: 10.7498/aps.68.20190476
    [10] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控. 物理学报, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [11] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析. 物理学报, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [12] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究. 物理学报, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [13] 王栋, 许军, 陈溢杭. 介电常数近零模式与表面等离激元模式耦合实现宽带光吸收. 物理学报, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [14] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [15] 杨韵茹, 关建飞. 基于金属-电介质-金属波导结构的等离子体滤波器的数值研究. 物理学报, 2016, 65(5): 057301. doi: 10.7498/aps.65.057301
    [16] 胡昌宝, 许吉, 丁剑平. 介质填充型二次柱面等离激元透镜的亚波长聚焦. 物理学报, 2016, 65(13): 137301. doi: 10.7498/aps.65.137301
    [17] 黄志芳, 倪亚贤, 孙华. 柱状磁光颗粒的局域表面等离激元共振及尺寸效应. 物理学报, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [18] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究. 物理学报, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [19] 朱华, 颜振东, 詹鹏, 王振林. 局域表面等离激元诱导的三次谐波增强效应. 物理学报, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
    [20] 张睿, 羊亚平. 负介电常数材料和负磁导率材料的双层结构中电磁波模式分析. 物理学报, 2010, 59(4): 2451-2456. doi: 10.7498/aps.59.2451
计量
  • 文章访问数:  5849
  • PDF下载量:  307
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-15
  • 修回日期:  2016-05-12
  • 刊出日期:  2016-07-05

/

返回文章
返回