搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柱状磁光颗粒的局域表面等离激元共振及尺寸效应

黄志芳 倪亚贤 孙华

引用本文:
Citation:

柱状磁光颗粒的局域表面等离激元共振及尺寸效应

黄志芳, 倪亚贤, 孙华

Localized surface plasmon resonance and the size effects of magneto-optic rods

Huang Zhi-Fang, Ni Ya-Xian, Sun Hua
PDF
导出引用
  • 柱状磁光颗粒的局域表面等离激元共振为二维磁光光子晶体的手征性边缘模的生成提供了重要的机制. 但目前对此类颗粒的局域表面等离激元共振效应的研究局限于长波长近似下的结果, 且缺乏对发生共振时的远场与近场特征的深入了解. 本文从散射理论出发, 计算并分析了柱状磁光颗粒发生局域表面等离激元共振的条件与特殊的场特征, 并讨论了颗粒尺寸对共振峰的影响. 计算结果解释了实验中观察到的二维磁光光子晶体的共振带隙与在长波长近似下得到的局域表面等离激元共振频率的明显偏移, 并展示了颗粒在较大尺寸下形成的高阶共振峰, 这可能有助于利用共振效应在磁光光子晶体中实现多模的手征边缘态.
    Localized surface plasmon resonance of cylindrical magneto optical particles provides an important mechanism for the formation of chiral edge states in two-dimensional magneto-optical photonic crystals. These states are an electromagnetic analogy of the so-called chiral edge state's (CESs) in a quantum Hall system where the power transmission is unidirectional due to particular topological properties of the bands. Just like their electronic counterpart, the number of optical CESs in the band gap opened by an applied magnetic field is determined by the sum of the Chern numbers of the lower bands. For a two-dimensional photonic crystal composed of ferrite rods magnetized along their axis, the coupling of the localized surface plasmon resonance states of each rod results in a narrow flat band-gap, which contains one-way edge modes arising from the circulation of the energy flow around each rod excited by the resonance with broken time-reversal symmetry. So far the interpretation of the resonance-related chiral edge states are based on the long-wavelength approximation of the localized surface plasmon resonance of an individual magneto-optical particle. Though the results agree with the experimental results qualitatively, an obvious quantitative deviation is still obvious. In this work we apply the scattering theory to analyze the resonance condition and the features of both the far-field and the near-field at resonance for cylindrical magneto-optical particles. Our calculation shows that the splitting of scattering peaks of different orders will occur due to the magneto-optical effect. Such a split is observed between an (+n)-peak and an (-n) peak, as a sign of the broken time-reversal symmetry, and also between peaks of lower-order and higher-order. Another important feature is the simultaneous occurring of the far-field resonance and the near-field resonance, where the latter is characterized by a peak of energy-flow circulation around the particle. Based on this model the effects of particle size on the resonance peaks are discussed. It is shown that the resonance peaks are moved and broadened with the particle size increasing. The results explain the obvious deviation of the position of the resonance band-gap from the predicted frequency according to the previous long-wavelength approximation. Furthermore, the calculation of a particle of moderately-large size (nearly one-tenth of the incident wavelength) demonstrates the appearance of higher-order modes up to n=4 circling around the particle surface. This implies that these higher-order modes may also make non-trivial contribution to the formation of the flat band-gap observed in a photonic crystal of ferrite-rods and affect the behaviours of the chiral-edge state existing in such a gap. Particularly, it may be helpful in realizing the multimodes of chiral edge states in magneto-optical photonic crystals.
      通信作者: 孙华, hsun@suda.edu.cn
    • 基金项目: 江苏省青年自然科学基金(批准号: BK20130284)资助的课题.
      Corresponding author: Sun Hua, hsun@suda.edu.cn
    • Funds: Supported by the Natural Science Foundation for the Youth of Jiangsu Province (Grant No. BK20130284).
    [1]

    Inoue M, Fujii T 1997 J. Appl. Phys. 81 5659

    [2]

    Temnov V V, Armelles G, Woggon U, Guzatov D, Cebollada A, Garcia-Martin A, Garcia-Martin J M, Thomay T, Leitenstorfer A, Bratschitsch R 2010 Nat. Photo. 4 107

    [3]

    Liang H, Liu H, Zhang Q, Fu S F, Zhou S, Wang X Z 2015 Chin. Phys. B 24 067807

    [4]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [5]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2009 Nature 461 772

    [6]

    Poo Y, Wu R, Lin Z, Yang Y, Chan C T 2009 Phys. Rev. Lett. 106 093903

    [7]

    Fang K, Yu Z, Fan S 2011 Phys. Rev. B 84 075477

    [8]

    Skirlo S A, Lu L, Soljacic M 2014 Phys. Rev. Lett. 113 113904

    [9]

    Liu S Y, Lu W L, Lin Z F, Chui S T 2011 Phys. Rev. B 84 045425

    [10]

    Lian J, Fu J X, Gan L, Li Z Y 2012 Phys. Rev. B 85 125108

    [11]

    Poo Y, Wu R, Liu S, Yang Y, Lin Z, Chui S T 2012 Appl. Phys. Lett. 101 081912

    [12]

    Chui S T, Liu S, Lin Z 2013 Phys. Rev. B 88 031201

    [13]

    Chui S T, Lin Z 2014 Chin. Phys. B 23 117802

    [14]

    Fan X, Zheng W, Singh D J 2014 Light: Sci. Appl. 3 e179

    [15]

    Cong C, Wu D J, Liu X J 2012 Acta Phys. Sin. 61 047802 (in Chinese) [丛超, 吴大建, 刘晓峻 2012 物理学报 61 047802]

    [16]

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805 (in Chinese) [邹伟博, 周骏, 金理, 张昊鹏 2012 物理学报 61 097805]

    [17]

    Zhu H, Yan Z D, Zhan P, Wang Z L 2013 Acta Phys. Sin. 62 178104 (in Chinese) [朱华, 颜振东, 詹鹏, 王振林 2013 物理学报 62 178104]

  • [1]

    Inoue M, Fujii T 1997 J. Appl. Phys. 81 5659

    [2]

    Temnov V V, Armelles G, Woggon U, Guzatov D, Cebollada A, Garcia-Martin A, Garcia-Martin J M, Thomay T, Leitenstorfer A, Bratschitsch R 2010 Nat. Photo. 4 107

    [3]

    Liang H, Liu H, Zhang Q, Fu S F, Zhou S, Wang X Z 2015 Chin. Phys. B 24 067807

    [4]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [5]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2009 Nature 461 772

    [6]

    Poo Y, Wu R, Lin Z, Yang Y, Chan C T 2009 Phys. Rev. Lett. 106 093903

    [7]

    Fang K, Yu Z, Fan S 2011 Phys. Rev. B 84 075477

    [8]

    Skirlo S A, Lu L, Soljacic M 2014 Phys. Rev. Lett. 113 113904

    [9]

    Liu S Y, Lu W L, Lin Z F, Chui S T 2011 Phys. Rev. B 84 045425

    [10]

    Lian J, Fu J X, Gan L, Li Z Y 2012 Phys. Rev. B 85 125108

    [11]

    Poo Y, Wu R, Liu S, Yang Y, Lin Z, Chui S T 2012 Appl. Phys. Lett. 101 081912

    [12]

    Chui S T, Liu S, Lin Z 2013 Phys. Rev. B 88 031201

    [13]

    Chui S T, Lin Z 2014 Chin. Phys. B 23 117802

    [14]

    Fan X, Zheng W, Singh D J 2014 Light: Sci. Appl. 3 e179

    [15]

    Cong C, Wu D J, Liu X J 2012 Acta Phys. Sin. 61 047802 (in Chinese) [丛超, 吴大建, 刘晓峻 2012 物理学报 61 047802]

    [16]

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805 (in Chinese) [邹伟博, 周骏, 金理, 张昊鹏 2012 物理学报 61 097805]

    [17]

    Zhu H, Yan Z D, Zhan P, Wang Z L 2013 Acta Phys. Sin. 62 178104 (in Chinese) [朱华, 颜振东, 詹鹏, 王振林 2013 物理学报 62 178104]

  • [1] 刘香莲, 李凯宙, 李晓琼, 张强. 二维电介质光子晶体中量子自旋与谷霍尔效应共存的研究. 物理学报, 2023, 72(7): 074205. doi: 10.7498/aps.72.20221814
    [2] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用. 物理学报, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [3] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应. 物理学报, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [4] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [5] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [6] 王善江, 苏丹, 张彤. 表面等离激元光热效应研究进展. 物理学报, 2019, 68(14): 144401. doi: 10.7498/aps.68.20190476
    [7] 左依凡, 李培丽, 栾开智, 王磊. 基于自准直效应的光子晶体异质结偏振分束器. 物理学报, 2018, 67(3): 034204. doi: 10.7498/aps.67.20171815
    [8] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究. 物理学报, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [9] 赵绚, 刘晨, 马会丽, 冯帅. 基于波导间能量耦合效应的光子晶体频段选择与能量分束器. 物理学报, 2017, 66(11): 114208. doi: 10.7498/aps.66.114208
    [10] 李长胜. 电光与磁光效应的互补特性及其传感应用. 物理学报, 2015, 64(4): 047801. doi: 10.7498/aps.64.047801
    [11] 周雯, 陈鹤鸣. 基于磁光效应的二维三角晶格光子晶体模分复用器. 物理学报, 2015, 64(6): 064210. doi: 10.7498/aps.64.064210
    [12] 赵秋玲, 吕浩, 张清悦, 牛东杰, 王霞. 染料掺杂光子晶体荧光带隙边缘的激射研究. 物理学报, 2013, 62(4): 044208. doi: 10.7498/aps.62.044208
    [13] 朱华, 颜振东, 詹鹏, 王振林. 局域表面等离激元诱导的三次谐波增强效应. 物理学报, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
    [14] 张浩, 赵建林, 张晓娟. 带缺陷结构的二维磁性光子晶体的数值模拟分析. 物理学报, 2009, 58(5): 3532-3537. doi: 10.7498/aps.58.3532
    [15] 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉, 王玲玲. 金属光子晶体平板的超强透射及其表面等离子体共振. 物理学报, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [16] 杜晓宇, 郑婉华, 任 刚, 王 科, 邢名欣, 陈良惠. 二维光子晶体耦合腔阵列的慢波效应研究. 物理学报, 2008, 57(1): 571-575. doi: 10.7498/aps.57.571
    [17] 张 浩, 赵建林, 张晓娟, 底 楠. 二维磁性光子晶体及其模场分析. 物理学报, 2007, 56(6): 3546-3552. doi: 10.7498/aps.56.3546
    [18] 张国营, 程 勇, 张学龙, 夏 天, 薛刘萍. 掺Pb,Ga对Ce:YIG晶体磁光性能的影响. 物理学报, 2006, 55(5): 2601-2605. doi: 10.7498/aps.55.2601
    [19] 张国营, 夏 天, 程 勇, 薛刘萍, 张学龙. 交换作用对CeF3晶体磁性和磁光效应的影响. 物理学报, 2006, 55(6): 3091-3094. doi: 10.7498/aps.55.3091
    [20] 温晓文, 李国俊, 仇高新, 李永平, 丁 磊, 隋 展. 多缺陷结构的一维磁光多层膜隔离器. 物理学报, 2004, 53(10): 3571-3576. doi: 10.7498/aps.53.3571
计量
  • 文章访问数:  7265
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-15
  • 修回日期:  2016-03-10
  • 刊出日期:  2016-06-05

/

返回文章
返回