搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

傅里叶望远镜发射阵列的冗余度及冗余度-斯特列尔比-目标信息特性分析

张羽 罗秀娟 曹蓓 陈明徕 刘辉 夏爱利 兰富洋

引用本文:
Citation:

傅里叶望远镜发射阵列的冗余度及冗余度-斯特列尔比-目标信息特性分析

张羽, 罗秀娟, 曹蓓, 陈明徕, 刘辉, 夏爱利, 兰富洋

Analysis of the redundancy of Fourier telescopy transmitter array and its redundancy-strehl ratio-target texture distribution characteristic

Zhang Yu, Luo Xiu-Juan, Cao Bei, Chen Ming-Lai, Liu Hui, Xia Ai-Li, Lan Fu-Yang
PDF
导出引用
  • 傅里叶望远技术中不同的基线配置产生不同方向的多组干涉条纹以扫描目标表面. 能否有效判断条纹方向与目标表面细节信息是否匹配决定了目标空间的采样效果. 本文首先对发射基线的冗余度进行了分析, 之后提出了一种新的发射基线分析方法, 通过定义冗余度-斯特列尔比-目标信息(RST)的概念, 将基线冗余度、目标细节信息与重构图像质量相结合. 分析了目标空间细节信息与基线配置的匹配关系. 文中采用T形阵列对目标空间频谱采样. 当某一基线配置的RST 值满足文中所设定的大小关系时, 判断目标的细节信息主要分布于阵列的横轴方向还是竖轴方向. 并以此为参考, 调整下一步基线扫描时横竖两轴的扩展规模, 实现了利用目标空间的较低频反馈信息来指导较高频信息的采样基线配置. 此分析方法的建立有助于优化傅里叶望远系统真实发射阵列的工作方式, 使基线的频谱与目标的空间谱较好地匹配, 达到更好的探测结果.
    The Fourier telescopy is a kind of active illumination imaging with high resolution by using multi-interfering fringes generated by the multi-beams from the large transmitter arrays. According to the imaging principle, the beams from one laser source are split and each beam is applied with a different tiny frequency shift so that the interfering fringes may moving across the target. The configuration of the beams changes so that they would generate fringes in different spatial frequencies and different directions. Recently, most of researches focused on the factors such as the baseline scale and data sampling efficiency that may affect the imaging quality. However, there are other two factors, i.e., the configuration of the transmitter and its redundancy, which need studying. In Fourier telescopy, if the direction and spatial frequency of the fringe patterns that are generated by the change of different baseline configurations match each other, the target surface information would be a crucial factor that affects the image quality.In the first part of this article, the practicability of zero redundancy of baseline is analyzed. The results show that the baseline cannot have zero redundancy due to the iteration algorithm. Then the minimum redundancy is analyzed and the minimum redundancy line is proposed. By using the Strehl ratio as the merit of the imaging quality, the concept of redundancy-strehl ratio-target texture distribution (RST) and calculation method are proposed. This method integrates the transmitter redundancy, target detail information and image quality together. The distribution of RST value on the frequency plane is compared with the minimum redundancy line. If the RST point is located on the horizontal side compared with the line, the target detail information on this baseline is mainly in the horizontal direction. On the other hand, if the RST point is located on the longitude side, the target information is mainly in the longitude direction. Therefore this new proposed method reveals the relationship between target spatial information and the baseline configuration. In this article T-shaped transmitter array is adopted, and the Fourier components are mainly distributed on the rectangle plane. According to this relationship and calculated RST value, the working transmitter may continuously rectify its scale and shifting patterns so that the spatial frequencies and directions of fringes may match the target Fourier components in time. In this article, three simulated images and two real images are tested by the proposed method, and the results show that the RST values and the distributions well reveale the relationship between the detailed information and the baseline configurations.Now the Fourier telescopy follows the procedure from laboratory setup to the real system research. Considering the convenience and cost of project realization, this method is helpful for analyzing the real system of the transmitter configuration and enhancing working efficiency.
      通信作者: 张羽, yuzhang16@opt.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61505248)资助的课题.
      Corresponding author: Zhang Yu, yuzhang16@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505248).
    [1]

    Luo X J, Zhang Y, Gao C X, Ren J, Cao B, Liu H, Chen M L {2015 Acta Opt. Sin. 35 0314001 (in Chinese) [罗秀娟, 张羽, 高存孝, 任娟, 曹蓓, 刘辉, 陈明徕 2015 光学学报 35 0314001]

    [2]

    Zhang Y, Luo X J, Xia A L, Cao B, Cheng Z Y, Zeng Z H, Si Q D, Wang B F 2014 Acta Photon. Sin. 43 0311001 (in Chinese) [张羽, 罗秀娟, 夏爱利, 曹蓓, 程志远, 曾志红, 司庆丹, 王保峰 2014 光子学报 43 0311001]

    [3]

    Cao B, Luo X J, Si Q D, Zeng Z H 2015 Acta Phys. Sin. 64 054204 (in Chinese) [曹蓓, 罗秀娟, 司庆丹, 曾志红 2015 物理学报 64 054204]

    [4]

    Zhang W X, Xiang L B, Kong X X, Li Y, Wu Z, Zhou Z S 2013 Acta Phys. Sin. 62 164203 (in Chinese) [张文喜, 相里斌, 孔新新, 李扬, 伍州, 周志盛 2013 物理学报 62 164203]

    [5]

    Zhang Y, Yang C P, Guo J, Kang M L, Wu J {2011 High Power Laser and Particle Beams 23 571 (in Chinese) [张炎, 杨春平, 郭晶, 康美苓, 吴健 2011 强激光与粒子束 23 571]

    [6]

    Dong L, Liu X Y, Lin X D, Wei P F, Yu S H {2012 Acta Opt. Sin. 32 0201004 (in Chinese) [董磊, 刘欣悦, 林旭东, 卫沛锋, 于树海 2012 光学学报 32 0201004]

    [7]

    Zhao M B, He J, Fu Q {2012 Acta Opt. Sin. 32 0628002 (in Chinese) [赵明波, 何峻, 付强 2012 光学学报 32 0628002]

    [8]

    Holmes R B, Ma S, Bhowmik A, Greninger C 1996 Opt. Soc. Am. 13 351

    [9]

    Arsac J {1955 Compt. Rend. Acad. Sci. 240 942

    [10]

    Cuellar L E, Stapp J, Cooper J 2005 Proc. SPIE 5896 58960D

    [11]

    Wang X W, Li Q, Wang Y G, Chen W, Hu X J {2009 J. National Univ. Defense Technol. 31 38 (in Chinese) [王小伟, 黎全, 王雁桂, 陈卫, 胡小景 2009 国防科技大学学报 31 38]

    [12]

    Si Q D, Luo X J, Zeng Z H 2014 Acta Phys. Sin. 63 104203 (in Chinese) [司庆丹, 罗秀娟, 曾志红 2014 物理学报 63 104203]

    [13]

    Cuellar L E, Cooper J, Mathis J, Fairchild P 2008 Proc. SPIE 7094 70940G

    [14]

    Moffet A T {1968 IEEE AP-16 172

  • [1]

    Luo X J, Zhang Y, Gao C X, Ren J, Cao B, Liu H, Chen M L {2015 Acta Opt. Sin. 35 0314001 (in Chinese) [罗秀娟, 张羽, 高存孝, 任娟, 曹蓓, 刘辉, 陈明徕 2015 光学学报 35 0314001]

    [2]

    Zhang Y, Luo X J, Xia A L, Cao B, Cheng Z Y, Zeng Z H, Si Q D, Wang B F 2014 Acta Photon. Sin. 43 0311001 (in Chinese) [张羽, 罗秀娟, 夏爱利, 曹蓓, 程志远, 曾志红, 司庆丹, 王保峰 2014 光子学报 43 0311001]

    [3]

    Cao B, Luo X J, Si Q D, Zeng Z H 2015 Acta Phys. Sin. 64 054204 (in Chinese) [曹蓓, 罗秀娟, 司庆丹, 曾志红 2015 物理学报 64 054204]

    [4]

    Zhang W X, Xiang L B, Kong X X, Li Y, Wu Z, Zhou Z S 2013 Acta Phys. Sin. 62 164203 (in Chinese) [张文喜, 相里斌, 孔新新, 李扬, 伍州, 周志盛 2013 物理学报 62 164203]

    [5]

    Zhang Y, Yang C P, Guo J, Kang M L, Wu J {2011 High Power Laser and Particle Beams 23 571 (in Chinese) [张炎, 杨春平, 郭晶, 康美苓, 吴健 2011 强激光与粒子束 23 571]

    [6]

    Dong L, Liu X Y, Lin X D, Wei P F, Yu S H {2012 Acta Opt. Sin. 32 0201004 (in Chinese) [董磊, 刘欣悦, 林旭东, 卫沛锋, 于树海 2012 光学学报 32 0201004]

    [7]

    Zhao M B, He J, Fu Q {2012 Acta Opt. Sin. 32 0628002 (in Chinese) [赵明波, 何峻, 付强 2012 光学学报 32 0628002]

    [8]

    Holmes R B, Ma S, Bhowmik A, Greninger C 1996 Opt. Soc. Am. 13 351

    [9]

    Arsac J {1955 Compt. Rend. Acad. Sci. 240 942

    [10]

    Cuellar L E, Stapp J, Cooper J 2005 Proc. SPIE 5896 58960D

    [11]

    Wang X W, Li Q, Wang Y G, Chen W, Hu X J {2009 J. National Univ. Defense Technol. 31 38 (in Chinese) [王小伟, 黎全, 王雁桂, 陈卫, 胡小景 2009 国防科技大学学报 31 38]

    [12]

    Si Q D, Luo X J, Zeng Z H 2014 Acta Phys. Sin. 63 104203 (in Chinese) [司庆丹, 罗秀娟, 曾志红 2014 物理学报 63 104203]

    [13]

    Cuellar L E, Cooper J, Mathis J, Fairchild P 2008 Proc. SPIE 7094 70940G

    [14]

    Moffet A T {1968 IEEE AP-16 172

  • [1] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像: 散射光场偏振特性的复用技术. 物理学报, 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] 孔梅梅, 薛银燕, 徐春生, 董媛, 刘悦, 潘世成, 赵瑞. 含有圆孔平板电极结构的双凸液体透镜的设计与分析. 物理学报, 2024, 73(1): 014207. doi: 10.7498/aps.73.20231291
    [3] 陈星宇, 周昕, 白星, 余展, 王玉杰, 李欣家, 刘洋, 孙铭泽. 傅里叶鬼成像与正弦鬼成像的等价性分析. 物理学报, 2023, 72(14): 144202. doi: 10.7498/aps.72.20222317
    [4] 张海鹏, 赵昌哲, 鞠晓璐, 汤杰, 肖体乔. 基于迭代重构算法改进晶体衍射分光X射线鬼成像的图像质量研究. 物理学报, 2022, 71(7): 074201. doi: 10.7498/aps.71.20211978
    [5] 宁啸坤, 耿滔. 频谱非对称包络调制的圆对称艾里光束的传播特性研究. 物理学报, 2022, 71(10): 104201. doi: 10.7498/aps.71.20220019
    [6] 王志鹏, 王秉中, 刘金品, 王任. 实现散射场强整形的微散射体阵列逆向设计方法. 物理学报, 2021, 70(1): 010202. doi: 10.7498/aps.70.20200825
    [7] 张书赫, 邵梦, 张盛昭, 周金华. 傅里叶域中的光线. 物理学报, 2019, 68(21): 214202. doi: 10.7498/aps.68.20190839
    [8] 董磊, 卢振武, 刘欣悦, 李正炜. 三种降采样成像策略的性能优化以及与传统傅里叶望远镜的比较. 物理学报, 2019, 68(7): 074203. doi: 10.7498/aps.68.20181801
    [9] 张雷雷, 唐立金, 张慕阳, 梁艳梅. 对称照明在傅里叶叠层成像中的应用. 物理学报, 2017, 66(22): 224201. doi: 10.7498/aps.66.224201
    [10] 程志远, 马彩文, 马青. 激光光强扰动对相干场成像降质影响理论研究. 物理学报, 2017, 66(24): 244202. doi: 10.7498/aps.66.244202
    [11] 于树海, 董磊, 刘欣悦, 凌剑勇. 傅里叶望远镜重构图像虚像分析. 物理学报, 2015, 64(18): 184205. doi: 10.7498/aps.64.184205
    [12] 程志远, 马彩文, 罗秀娟, 张羽, 朱香平, 夏爱利. 抑制孔径间距误差影响的相干场成像质量提升方法研究. 物理学报, 2015, 64(12): 124203. doi: 10.7498/aps.64.124203
    [13] 刘永迪, 李虹, 张波, 郑琼林, 游小杰. 基于双重傅里叶级数的混沌SPWM频谱量化分析. 物理学报, 2014, 63(7): 070503. doi: 10.7498/aps.63.070503
    [14] 司庆丹, 罗秀娟, 曾志红. 相干场成像原理局限性分析. 物理学报, 2014, 63(10): 104203. doi: 10.7498/aps.63.104203
    [15] 庞武斌, 岑兆丰, 李晓彤, 钱炜, 尚红波, 许伟才. 偏振对光学系统成像质量的影响. 物理学报, 2012, 61(23): 234202. doi: 10.7498/aps.61.234202
    [16] 刘政, 王胜千, 黄林海, 饶长辉. 相位平移误差与子孔径自身像差对稀疏光学合成孔径系统成像质量的综合影响分析. 物理学报, 2011, 60(10): 100702. doi: 10.7498/aps.60.100702
    [17] 曾祥楷, 饶云江. Bragg光纤光栅傅里叶模式耦合理论. 物理学报, 2010, 59(12): 8597-8606. doi: 10.7498/aps.59.8597
    [18] 黄素娟, 王朔中, 于瀛洁. 共轭对称延拓傅里叶计算全息. 物理学报, 2009, 58(2): 952-958. doi: 10.7498/aps.58.952
    [19] 李平, 粟敬钦, 马驰, 张锐, 景峰. 光谱色散匀滑对焦斑光强频谱的影响. 物理学报, 2009, 58(9): 6210-6215. doi: 10.7498/aps.58.6210
    [20] 刘丽想, 杜国浩, 胡 雯, 谢红兰, 肖体乔. X射线同轴轮廓成像中影响成像质量的若干因素研究. 物理学报, 2007, 56(8): 4556-4564. doi: 10.7498/aps.56.4556
计量
  • 文章访问数:  5247
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-18
  • 修回日期:  2016-02-15
  • 刊出日期:  2016-06-05

/

返回文章
返回