搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抑制孔径间距误差影响的相干场成像质量提升方法研究

程志远 马彩文 罗秀娟 张羽 朱香平 夏爱利

引用本文:
Citation:

抑制孔径间距误差影响的相干场成像质量提升方法研究

程志远, 马彩文, 罗秀娟, 张羽, 朱香平, 夏爱利

Improving coherent field imaging quality by suppressing the influence of transmitting aperture spacing error

Cheng Zhi-Yuan, Ma Cai-Wen, Luo Xiu-Juan, Zhang Yu, Zhu Xiang-Ping, Xia Ai-Li
PDF
导出引用
  • 相干场成像基于激光发射孔径间距相等、频谱相等的基本假设, 迭代计算频谱重建高分辨图像, 实际应用中不可避免的激光发射孔径间距误差是影响成像质量的重要因素. 针对发射孔径间距误差造成的成像质量下降问题, 提出一种抑制孔径间距误差影响的成像质量提升方法. 首先分析了孔径间距误差对激光回波频谱和成像质量的影响机理; 推导得到了频谱误差迭代模型; 理论上构建了孔径间距误差对信号频谱和成像质量的零影响条件方程; 提出一种线性规划方法求解成像质量零影响条件方程, 得到孔径间距误差最优化分布矩阵; 实际应用中基于该最优化误差矩阵合理分配各孔径间距误差, 就可抑制孔径误差对成像质量的影响. 实验验证了该方法的正确性和有效性. 结果表明: 该方法可提升成像质量评价指标斯特列尔比近1倍; 所提方法可便捷有效地抑制孔径误差对成像质量的影响. 该研究为实际相干场系统成像质量的提升和发射阵列孔径间距精度设计提供了理论指导.
    Coherent field imaging is based on the assumption of equal transmitting apertures spacing and equal spectrum of laser, and high-resolution image is reconstructed by iteratively computing the frequency spectrum. However, the inevitable transmitting aperture spacing error of laser is a key factor to affect the coherent field imaging quality in the application. Aiming at the problem of degrading imaging quality caused by the transmitting aperture spacing error, we discuss the mechanism of influence of aperture spacing error on imaging quality and propose a novel method of improving imaging quality from the perspective of suppressing the influence of transmitting aperture spacing error. Firstly, the mechanism of the influence of aperture spacing error on imaging quality and laser echo spectrum is analyzed in detail. Then we derive a frequency spectrum error propagation model. Based on the model, the iterative effect of frequency spectrum error is investigated and the trend of variation in imaging quality with frequency spectrum error is given. We propose a theoretical equation, in which the transmitting aperture spacing error has no influence on frequency spectrum nor imaging quality. To solve the above equation, an optimized method of linear programming is proposed and the optimized matrix of aperture spacing error is obtained. In practice, the influence of aperture spacing error on imaging quality can be largely counteracted by reasonably allocating aperture spacing error according to the optimized spacing error matrix. The correctness and validity of the theoretical model are verified by a simulation experiment. The results show that the Strehl ratio of imaging quality index can be improved by about 100% through using the proposed method, the greater the aperture spacing error, the higher the Strehl ratio of imaging quality index obtained by the method will be. In addition, the method is easy to use practically and less costly as well. Finally, it is concluded that the proposed method can easily and effectively counteract the degrading effect of aperture spacing error on imaging quality. The research can provide a theoretical basis for improving imaging quality and reasonably assigning transmitter aperture spacing accuracy of coherent field imaging telescope.
    • 基金项目: 国家自然科学基金(批准号:11173053)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11173053).
    [1]

    Holmes R B, Ma S, Bhowmik A, Greninger C 1996 J. Opt. Soc. Am. A 13 351

    [2]

    Holmes R B, Brinkley T 1999 Proc. SPIE 3815 11

    [3]

    Rhodes W T 2012 Appl. Opt. 51 A11

    [4]

    Cuellar E L, Cooper J, Mathis J, Fairchild P 2008 Proc. SPIE 7094 70940G

    [5]

    Liu R F, Yuan X X, Fang Y Z, Zhang P, Zhou Y, Gao H, Li F L 2014 Chin. Phys. B 23 054202

    [6]

    Fu J, Li P 2013 Chin. Phys. B 22 014204

    [7]

    Yu S H, Wang J L, Dong L, Liu X Y, Wang G C 2014 Acta Phys Sin. 63 104203 (in Chinese) [司庆丹, 罗秀娟, 曾志红 2014 物理学报 63 104203]

    [8]

    Luo X J, Zhang Y, Sun X, Cao B, Zeng Z H, Xia A L, Li L B, Zhu S L 2013 Acta Opt. Sin. 33 0801004 (in Chinese) [罗秀娟, 张羽, 孙鑫, 曹蓓, 曾志红, 夏爱利, 李立波, 朱少岚 2013 光学学报 33 0801004]

    [9]

    Zeng Z H, Luo X J, Wang B F, Xia A L, Cheng Z Y, Si Q D 2014 Acta Photon. Sin. 43 0601002 (in Chinese) [曾志红, 罗秀娟, 王保峰, 夏爱利, 程志远, 司庆丹 2014 光子学报 43 0601002]

    [10]

    Xiang L B, Zhang W X, Wu Z, L X Y, Li Y, Zhou Z S, Kong X X 2013 Acta Phys. Sin. 62 224201 (in Chinese) [相里斌, 张文喜, 伍洲, 吕笑宇, 李杨, 周志盛, 孔新新 2013 物理学报 62 224201]

    [11]

    Ye S, Liu Y, Wu J 2011 High Power Laser Particle Beams 23 611 (in Chinese) [叶溯, 刘艺, 吴健 2011 强激光与粒子束 23 611]

    [12]

    Zhang W X, Xiang L B, Kong X X, Li Y, Wu Z, Zhou Z S 2013 Acta Phys. Sin. 62 164203 (in Chinese) [张文喜, 相里斌, 孔新新, 李杨, 伍洲, 周志胜 2013 物理学报 62 164203]

    [13]

    Jiang Z Y, Li L, Huang Y F 2009 Chin. Phys. B 18 2774

    [14]

    Li Y 2013 Ph. D. Dissertation (Xi’an: Chinese Academy Scienses University) (in Chinese) [李杨 2013 博士学位论文 (西安: 中国科学院大学)]

    [15]

    Kong X X, Huang M, Zhang W X 2012 Acta Opt. Sin. 32 1211001 (in Chinese) [孔新新, 黄旻, 张文喜 2012 光学学报 32 1211001]

  • [1]

    Holmes R B, Ma S, Bhowmik A, Greninger C 1996 J. Opt. Soc. Am. A 13 351

    [2]

    Holmes R B, Brinkley T 1999 Proc. SPIE 3815 11

    [3]

    Rhodes W T 2012 Appl. Opt. 51 A11

    [4]

    Cuellar E L, Cooper J, Mathis J, Fairchild P 2008 Proc. SPIE 7094 70940G

    [5]

    Liu R F, Yuan X X, Fang Y Z, Zhang P, Zhou Y, Gao H, Li F L 2014 Chin. Phys. B 23 054202

    [6]

    Fu J, Li P 2013 Chin. Phys. B 22 014204

    [7]

    Yu S H, Wang J L, Dong L, Liu X Y, Wang G C 2014 Acta Phys Sin. 63 104203 (in Chinese) [司庆丹, 罗秀娟, 曾志红 2014 物理学报 63 104203]

    [8]

    Luo X J, Zhang Y, Sun X, Cao B, Zeng Z H, Xia A L, Li L B, Zhu S L 2013 Acta Opt. Sin. 33 0801004 (in Chinese) [罗秀娟, 张羽, 孙鑫, 曹蓓, 曾志红, 夏爱利, 李立波, 朱少岚 2013 光学学报 33 0801004]

    [9]

    Zeng Z H, Luo X J, Wang B F, Xia A L, Cheng Z Y, Si Q D 2014 Acta Photon. Sin. 43 0601002 (in Chinese) [曾志红, 罗秀娟, 王保峰, 夏爱利, 程志远, 司庆丹 2014 光子学报 43 0601002]

    [10]

    Xiang L B, Zhang W X, Wu Z, L X Y, Li Y, Zhou Z S, Kong X X 2013 Acta Phys. Sin. 62 224201 (in Chinese) [相里斌, 张文喜, 伍洲, 吕笑宇, 李杨, 周志盛, 孔新新 2013 物理学报 62 224201]

    [11]

    Ye S, Liu Y, Wu J 2011 High Power Laser Particle Beams 23 611 (in Chinese) [叶溯, 刘艺, 吴健 2011 强激光与粒子束 23 611]

    [12]

    Zhang W X, Xiang L B, Kong X X, Li Y, Wu Z, Zhou Z S 2013 Acta Phys. Sin. 62 164203 (in Chinese) [张文喜, 相里斌, 孔新新, 李杨, 伍洲, 周志胜 2013 物理学报 62 164203]

    [13]

    Jiang Z Y, Li L, Huang Y F 2009 Chin. Phys. B 18 2774

    [14]

    Li Y 2013 Ph. D. Dissertation (Xi’an: Chinese Academy Scienses University) (in Chinese) [李杨 2013 博士学位论文 (西安: 中国科学院大学)]

    [15]

    Kong X X, Huang M, Zhang W X 2012 Acta Opt. Sin. 32 1211001 (in Chinese) [孔新新, 黄旻, 张文喜 2012 光学学报 32 1211001]

计量
  • 文章访问数:  2021
  • PDF下载量:  330
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-09
  • 修回日期:  2014-12-22
  • 刊出日期:  2015-06-05

抑制孔径间距误差影响的相干场成像质量提升方法研究

  • 1. 中国科学院西安光学精密机械研究所, 西安 710119;
  • 2. 中国科学院大学, 北京 100049
    基金项目: 

    国家自然科学基金(批准号:11173053)资助的课题.

摘要: 相干场成像基于激光发射孔径间距相等、频谱相等的基本假设, 迭代计算频谱重建高分辨图像, 实际应用中不可避免的激光发射孔径间距误差是影响成像质量的重要因素. 针对发射孔径间距误差造成的成像质量下降问题, 提出一种抑制孔径间距误差影响的成像质量提升方法. 首先分析了孔径间距误差对激光回波频谱和成像质量的影响机理; 推导得到了频谱误差迭代模型; 理论上构建了孔径间距误差对信号频谱和成像质量的零影响条件方程; 提出一种线性规划方法求解成像质量零影响条件方程, 得到孔径间距误差最优化分布矩阵; 实际应用中基于该最优化误差矩阵合理分配各孔径间距误差, 就可抑制孔径误差对成像质量的影响. 实验验证了该方法的正确性和有效性. 结果表明: 该方法可提升成像质量评价指标斯特列尔比近1倍; 所提方法可便捷有效地抑制孔径误差对成像质量的影响. 该研究为实际相干场系统成像质量的提升和发射阵列孔径间距精度设计提供了理论指导.

English Abstract

参考文献 (15)

目录

    /

    返回文章
    返回