搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含有圆孔平板电极结构的双凸液体透镜的设计与分析

孔梅梅 薛银燕 徐春生 董媛 刘悦 潘世成 赵瑞

引用本文:
Citation:

含有圆孔平板电极结构的双凸液体透镜的设计与分析

孔梅梅, 薛银燕, 徐春生, 董媛, 刘悦, 潘世成, 赵瑞

Design and analysis of biconvex liquid lens with circular hole plate electrode structure

Kong Mei-Mei, Xue Yin-Yan, Xu Chun-Sheng, Dong Yuan, Liu Yue, Pan Shi-Cheng, Zhao Rui
PDF
HTML
导出引用
  • 基于平行平板电极的变焦液体透镜的有关研究, 通过应用介电泳效应, 提出了一种含有圆孔平板电极结构的双凸液体透镜模型, 是一种新型的三层液体透镜结构. 利用Comsol, Matlab和Zemax软件仿真分析了该模型在不同电压下的面型变化与成像光路, 得出其变焦范围为22.6—15.9 mm, 并对制备的器件进行具体的实验分析, 获得了不同电压下双凸液体透镜的液滴上下界面面型和该透镜的变焦范围23.8—17.5 mm, 与仿真结果基本一致, 而且其成像分辨率可达到45.255 lp/mm. 结果表明, 所提出的这种新型三层液体结构的双凸液体透镜具有结构简单、易于实现的特点, 而且具备良好的成像质量.
    In this paper, based on the research of zoom liquid lens with parallel plate electrode and the principle of dielectrophoresis, a model of the biconvex liquid lens with circular hole plate electrode structure is proposed, which is a novel three-layer liquid lens structure. The dielectrophoretic effect refers to the phenomenon that free dielectric molecules will be polarized and moved by the force in a non-uniform electric field, thus deforming the dielectric liquid. In the dielectrophoretic liquid lens, only two insulating liquid materials with large refractive index difference and dielectric constant difference need to be selected, which can increase the selection range of liquid materials. The liquid lens structure mainly consists of a piece of double-sided conductive flat plate ITO glass with a circular hole and two pieces of single-sided conductive flat plate ITO glass, which respectively form two sets of flat electrode structures to control the upper interface and lower interface of the liquid droplet. In this structure, the influences of the intermediate glass plate on the focus and imaging are reduced by using the flat plate electrode with circular hole. The theoretical analysis of the structure is carried out with simulation software. Firstly, the models of the biconvex liquid lens with circular hole plate electrode under different voltages are built with Comsol software, the data of upper interface and lower interface of the liquid droplet are exported. Then by using Matlab, the surface shapes of the upper interface and lower interface of the droplet are fitted and the corresponding aspheric coefficients are obtained. Finally, the optical models are built with Zemax software, the imaging optical paths and the variation range of focal length under different voltages are analyzed. On the basis of the simulation, the corresponding device is made, and the specific experimental analysis is carried out. The surface patterns of the upper interface and lower interfaces of the droplet of the biconvex liquid lens under different voltages are recorded, the focal length and imaging resolution of the liquid lens are measured. When the operating voltage is in a range of 0–260 V, the focal length varies from 23.8–17.5 mm, which is basically consistent with the simulation results (22.6–15.9 mm). The feasibility of the structure of the biconvex liquid lens with circular hole plate electrode structure is verified experimentally. The imaging resolution can reach 45.255 lp/mm. The results show that this proposed novel three-layer liquid structure of the biconvex liquid lens has the characteristics of simple structure, easy-to-realize and good imaging quality. Therefore, the research of this biconvex liquid lens can provide a new idea for expanding the high-resolution imaging research of liquid lenses and their applications.
      通信作者: 孔梅梅, kongmm@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61905117, 61775102)资助的课题.
      Corresponding author: Kong Mei-Mei, kongmm@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61905117, 61775102).
    [1]

    Zhao Z Z, Kuang F L, Zhang N H, Li L 2021 IEEE Photonics Technol. Lett. 33 1297Google Scholar

    [2]

    Liu J, Li H 2014 J. Opt. 3 25

    [3]

    Liu C, Wang Q H, Yao L X, Wang M H 2014 Micromachines- Basel 5 496Google Scholar

    [4]

    Kopp D, Zappe H 2016 IEEE Photonics Technol. Lett. 28 597Google Scholar

    [5]

    Cheng C C, Chang C A, Yeh J A 2006 Opt. Express 14 4101Google Scholar

    [6]

    Ren H W, Xianyu H Q, Xu S, Wu S T 2008 Opt. Express 16 14954Google Scholar

    [7]

    Xu S, Lin Y J, Wu S T 2009 Opt. Express 17 10499Google Scholar

    [8]

    Lu Y S, Tu H E, Xu Y, Jiang H R 2013 Appl. Phys. Lett. 103 26113Google Scholar

    [9]

    Chen Q M, Li T, Li Z, Lu C, Zhang X 2018 Lab Chip. 18 3849Google Scholar

    [10]

    Kong M M, Zhu L F, Chen D, Liang Z C, Zhao R, Xu E M 2016 J. Opt. Soc. Korea 20 427Google Scholar

    [11]

    Kong M M, Chen X, Yuan Y, Zhao R, Chen T, Liang Z C 2019 Curr. Opt. Photonics 3 177Google Scholar

    [12]

    孔梅梅, 刘悦, 董媛, 薛银燕, 潘世成, 赵瑞 2023 物理学报 72 154206Google Scholar

    Kong M M, Liu Y, Dong Y, Xue Y Y, Pan S C, Zhao R 2023 Acta. Phys. Sin. 72 154206Google Scholar

    [13]

    王琼华, 刘超, 王迪, 李磊 2021 液体光子器件(北京: 科学出版社) 第82—83页

    Wang Q H, Liu C, Wang D, Li L 2021 Liquid Photonic Device (Beijing: Science Press) pp82–83

    [14]

    Ren H W, Wu S T 2012 Introduction to Adaptive Lenses (Hoboken: Willey) pp107–148

    [15]

    Berthier J 2008 Micro-drops and Digital Microfluidics (New York: William Andrew) pp331–333

    [16]

    Xu S, Ren H W, Wu S T 2013 J. Phys. D: Appl. Phys. 46 483001Google Scholar

    [17]

    Edwards A M J, Brown C V, Newton M I, McHale G 2018 Curr. Opin. Colloid. In. 36 28Google Scholar

    [18]

    Chamakos N T, Kavousanakis M E, Papathanasiou A G 2014 Langmuir 30 4662Google Scholar

    [19]

    袁东 2021 硕士学位论文 (南京: 南京邮电大学)

    Yuan D 2021 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications

    [20]

    梁丹 2022 硕士学位论文 (南京: 南京邮电大学)

    Liang D 2022 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications

  • 图 1  含有圆孔平板电极结构的双凸液体透镜结构 (a) 立体示意图; (b) 剖面图

    Fig. 1.  Structure of the biconvex liquid lens with a circular hole plate electrode: (a) Stereogram; (b) profile map.

    图 2  理论推导结构

    Fig. 2.  Structure of theoretical derivation.

    图 3  Comsol中含有圆孔平板电极结构的双凸液体透镜模型 (a)侧面图; (b)立体斜视图

    Fig. 3.  Biconvex liquid lens model with circular hole plate electrode structure in comsol: (a) Side view; (b) stereoscopic oblique view.

    图 4  初始状态(0 V)时, 双凸液体透镜的液滴面型拟合结果(a)上界面; (b)下界面

    Fig. 4.  Droplet profile of the biconvex liquid lens is fitted at the initial state (0 V): (a) Upper interface; (b) lower interface.

    图 5  电压最大(260 V)时, 双凸液体透镜的液滴面型拟合结果 (a)上界面; (b)下界面

    Fig. 5.  Droplet profile of the biconvex liquid lens is fitted at maximum voltage (260 V): (a) Upper interface; (b) lower interface.

    图 6  双凸液体透镜的光路图 (a) 初始状态(0 V); (b)电压加到最大(260 V)

    Fig. 6.  Optical path diagram of the biconvex liquid lens: (a) Initial state (0 V); (b) maximum voltage state (260 V).

    图 7  制备的含有圆孔平板电极结构的双凸液体透镜实物图

    Fig. 7.  Physical image of the biconvex liquid lens with a circular hole plate electrode structure.

    图 8  不同电压下的双凸液体透镜面型图 (a) 0 V; (b) 160 V; (c) 260 V

    Fig. 8.  Surface profiles of the biconvex liquid lens under different voltages: (a) 0 V; (b) 160 V; (c) 260 V.

    图 9  玻罗分化线

    Fig. 9.  Borro differentiation lines.

    图 10  不同电压下的双凸液体透镜焦距图

    Fig. 10.  Focal length of the biconvex liquid lens under different voltages.

    图 11  不同电压下的双凸液体透镜的分辨率图 (a)初始状态; (b)分辨率最大(260 V)

    Fig. 11.  Resolution diagram of the biconvex liquid lens under different voltage: (a) Initial state; (b) maximum resolution state (260 V).

    图 12  双凸液体透镜实验与仿真的焦距对比图

    Fig. 12.  Comparison of focal length between experimental and simulated the biconvex liquid lens.

  • [1]

    Zhao Z Z, Kuang F L, Zhang N H, Li L 2021 IEEE Photonics Technol. Lett. 33 1297Google Scholar

    [2]

    Liu J, Li H 2014 J. Opt. 3 25

    [3]

    Liu C, Wang Q H, Yao L X, Wang M H 2014 Micromachines- Basel 5 496Google Scholar

    [4]

    Kopp D, Zappe H 2016 IEEE Photonics Technol. Lett. 28 597Google Scholar

    [5]

    Cheng C C, Chang C A, Yeh J A 2006 Opt. Express 14 4101Google Scholar

    [6]

    Ren H W, Xianyu H Q, Xu S, Wu S T 2008 Opt. Express 16 14954Google Scholar

    [7]

    Xu S, Lin Y J, Wu S T 2009 Opt. Express 17 10499Google Scholar

    [8]

    Lu Y S, Tu H E, Xu Y, Jiang H R 2013 Appl. Phys. Lett. 103 26113Google Scholar

    [9]

    Chen Q M, Li T, Li Z, Lu C, Zhang X 2018 Lab Chip. 18 3849Google Scholar

    [10]

    Kong M M, Zhu L F, Chen D, Liang Z C, Zhao R, Xu E M 2016 J. Opt. Soc. Korea 20 427Google Scholar

    [11]

    Kong M M, Chen X, Yuan Y, Zhao R, Chen T, Liang Z C 2019 Curr. Opt. Photonics 3 177Google Scholar

    [12]

    孔梅梅, 刘悦, 董媛, 薛银燕, 潘世成, 赵瑞 2023 物理学报 72 154206Google Scholar

    Kong M M, Liu Y, Dong Y, Xue Y Y, Pan S C, Zhao R 2023 Acta. Phys. Sin. 72 154206Google Scholar

    [13]

    王琼华, 刘超, 王迪, 李磊 2021 液体光子器件(北京: 科学出版社) 第82—83页

    Wang Q H, Liu C, Wang D, Li L 2021 Liquid Photonic Device (Beijing: Science Press) pp82–83

    [14]

    Ren H W, Wu S T 2012 Introduction to Adaptive Lenses (Hoboken: Willey) pp107–148

    [15]

    Berthier J 2008 Micro-drops and Digital Microfluidics (New York: William Andrew) pp331–333

    [16]

    Xu S, Ren H W, Wu S T 2013 J. Phys. D: Appl. Phys. 46 483001Google Scholar

    [17]

    Edwards A M J, Brown C V, Newton M I, McHale G 2018 Curr. Opin. Colloid. In. 36 28Google Scholar

    [18]

    Chamakos N T, Kavousanakis M E, Papathanasiou A G 2014 Langmuir 30 4662Google Scholar

    [19]

    袁东 2021 硕士学位论文 (南京: 南京邮电大学)

    Yuan D 2021 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications

    [20]

    梁丹 2022 硕士学位论文 (南京: 南京邮电大学)

    Liang D 2022 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications

  • [1] 尚修霆, 陈陶, 谌静, 徐荣青. 基于双柔性电极模拟叉指图案电极的液体介电泳研究. 物理学报, 2024, 73(3): 034701. doi: 10.7498/aps.73.20231485
    [2] 孔梅梅, 董媛, 徐春生, 刘悦, 薛银燕, 潘世成, 赵瑞. 基于平行平板电极的非球面双液体透镜的仿真与实验分析. 物理学报, 2023, 72(24): 244203. doi: 10.7498/aps.72.20230994
    [3] 谷同凯, 王兰兰, 国阳, 蒋维涛, 史永胜, 杨硕, 陈金菊, 刘红忠. 光盘上集成的液体微透镜阵列与可重构超分辨成像. 物理学报, 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [4] 贺芷椰, 张彦东, 唐春华, 李军利, 李四维, 于斌. 中继透镜分辨率在像素编码曝光成像中对图像重构质量的影响分析. 物理学报, 2023, 72(2): 024201. doi: 10.7498/aps.72.20221588
    [5] 孔梅梅, 刘悦, 董媛, 薛银燕, 潘世成, 赵瑞. 基于平面电极的非球面双液体透镜的设计与分析. 物理学报, 2023, 72(15): 154206. doi: 10.7498/aps.72.20230758
    [6] 张海鹏, 赵昌哲, 鞠晓璐, 汤杰, 肖体乔. 基于迭代重构算法改进晶体衍射分光X射线鬼成像的图像质量研究. 物理学报, 2022, 71(7): 074201. doi: 10.7498/aps.71.20211978
    [7] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211083
    [8] 程志远, 马彩文, 马青. 激光光强扰动对相干场成像降质影响理论研究. 物理学报, 2017, 66(24): 244202. doi: 10.7498/aps.66.244202
    [9] 周继德, 常军, 牛亚军, 谢桂娟, 王希. 新型离轴反射变焦距光学系统的多视场检测方法. 物理学报, 2016, 65(8): 084208. doi: 10.7498/aps.65.084208
    [10] 张羽, 罗秀娟, 曹蓓, 陈明徕, 刘辉, 夏爱利, 兰富洋. 傅里叶望远镜发射阵列的冗余度及冗余度-斯特列尔比-目标信息特性分析. 物理学报, 2016, 65(11): 114201. doi: 10.7498/aps.65.114201
    [11] 钟哲强, 胡小川, 李泽龙, 叶荣, 张彬. 用于直接驱动的快速变焦新方案. 物理学报, 2015, 64(5): 054209. doi: 10.7498/aps.64.054209
    [12] 尹向宝, 刘永军, 张伶莉, 吕月兰, 霍泊帆, 孙伟民. 大变焦范围电调谐液晶变焦透镜的研究. 物理学报, 2015, 64(18): 184212. doi: 10.7498/aps.64.184212
    [13] 程志远, 马彩文, 罗秀娟, 张羽, 朱香平, 夏爱利. 抑制孔径间距误差影响的相干场成像质量提升方法研究. 物理学报, 2015, 64(12): 124203. doi: 10.7498/aps.64.124203
    [14] 沈本兰, 常军, 王希, 牛亚军, 冯树龙. 三反射主动变焦系统设计. 物理学报, 2014, 63(14): 144201. doi: 10.7498/aps.63.144201
    [15] 庞武斌, 岑兆丰, 李晓彤, 钱炜, 尚红波, 许伟才. 偏振对光学系统成像质量的影响. 物理学报, 2012, 61(23): 234202. doi: 10.7498/aps.61.234202
    [16] 刘政, 王胜千, 黄林海, 饶长辉. 相位平移误差与子孔径自身像差对稀疏光学合成孔径系统成像质量的综合影响分析. 物理学报, 2011, 60(10): 100702. doi: 10.7498/aps.60.100702
    [17] 任玉坤, 敖宏瑞, 顾建忠, 姜洪源, Antonio Ramos. 面向微系统的介电泳力微纳粒子操控研究. 物理学报, 2009, 58(11): 7869-7877. doi: 10.7498/aps.58.7869
    [18] 刘丽想, 杜国浩, 胡 雯, 谢红兰, 肖体乔. X射线同轴轮廓成像中影响成像质量的若干因素研究. 物理学报, 2007, 56(8): 4556-4564. doi: 10.7498/aps.56.4556
    [19] 张海涛, 巩马理, 赵达尊, 闫平, 崔瑞祯, 贾维溥. 实现超分辨率的微变焦法. 物理学报, 2001, 50(8): 1486-1491. doi: 10.7498/aps.50.1486
    [20] 许培英, 盛冬宁, 陆怀先. 磁性液体的介电特性. 物理学报, 1988, 37(7): 1192-1196. doi: 10.7498/aps.37.1192
计量
  • 文章访问数:  1749
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-08
  • 修回日期:  2023-09-21
  • 上网日期:  2023-10-08
  • 刊出日期:  2024-01-05

/

返回文章
返回