搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bragg光纤光栅傅里叶模式耦合理论

曾祥楷 饶云江

引用本文:
Citation:

Bragg光纤光栅傅里叶模式耦合理论

曾祥楷, 饶云江

Theory of Fourier mode coupling for fiber Bragg gratings

Rao Yun-Jiang, Zeng Xiang-Kai
PDF
导出引用
  • 建立了Bragg光纤光栅傅里叶模式耦合理论.在分析光纤光栅的耦合模时,发现了耦合模式的振幅系数间存在傅里叶变换关系.推导了将傅里叶变换和模式耦合融合在一起的Bragg光纤光栅反射谱和透射谱的通用表达式.该理论是用傅里叶变换得到Bragg光纤光栅折射率微扰的空域谱,再对该空域谱进行模式耦合分析计算,从而得到Bragg光纤光栅的光谱特性.根据该理论,仿真分析了Bragg光纤光栅的谱特性,与耦合模理论、直接傅里叶变换法进行了对比分析.结果表明,傅里叶模式耦合理论与传统的耦合模理论及实际Bragg光纤光栅的光谱特性一致,具有简单、清晰、直接、精确和分析效率高的特点,可分析任意轴向折射率微扰分布的Bragg光纤光栅结构.
    A novel theory, namely, Fourier mode coupling (FMC) theory for fiber Bragg gratings (FBGs) is proposed in this paper. During analyzing coupled modes of FBGs, the Fourier transform relations among the amplitude coefficients of coupled modes are found for the first time. The general expressions of reflective and transmissive spectra of FBGs are deduced from the combination of Fourier transform with the well-known coupled-mode theory. In the proposed FMC theory, the spectral characteristics of the FBG are achieved by the calculation of coupled modes in the spatial domain spectrum, which is the Fourier transform result of refractive index perturbation in the FBG. The FBG spectrum based on the FMC theory is simulated here, and compared with those obtained from the coupled mode theory and pure Fourier transform. The comparison shows that the FMC theory for and the derived spactra of FBGs are in accordance with the coupled mode theory and the practical spectra of the FBG respectively. The FMC theory has many features, these being simple, clear, direct, accurate and fast, which could be used as a universal tool for fast spectrum analysis of any FBG with an arbitrary distribution of refractive index perturbation along the fiber axis.
    [1]

    Lam D K W, Garside B K 1981 Appl. Opt. 20 440

    [2]

    Yamada M, Sakuda K 1987 Appl. Opt. 26 3474

    [3]

    Poladian L 1993 Phys. Rev. E 48 4758

    [4]

    Bouzid A, Abushagur M A G 1997 Appl. Opt. 36 558

    [5]

    Peral E, Capmany J 1997 J. Lightwave Technol. 15 1295

    [6]

    Kogelnik H 1976 Bell Sys. Tech. J. 55 109

    [7]

    Kogelnik H 1990 Theory of Optical Waveguides in Guided-wave Optoelectronics (Berlin: Springer-Verlag)

    [8]

    Erdogan T, Sipe J E 1996 J. Opt. Soc. Am. A 13 296

    [9]

    Erdogan T 1997 J. Opt. Soc. Am. A 14 1760

    [10]

    Erdogan T 1997 J. Lightwave Technol. 15 1277

    [11]

    Lee K S, Erdogan T 2001 Electron. Lett. 37 156

    [12]

    Wang Y H, Ren W H, Liu Y, Tan Z W, Jian S S 2008 Acta Phys. Sin. 57 363 (in Chinese) [王燕花、任文华、刘 艳、谭中伟、简水生 2008 物理学报 57 363]

    [13]

    Qiu K, Wu B J, Wen F 2009 Acta Phys. Sin. 58 1726 (in Chinese) [邱 昆、武保剑、文 峰 2009 物理学报 58 1726]

    [14]

    Wang M G, Wei H, Jian S S 2003 Acta Phys. Sin. 52 609 (in Chinese) [王目光、魏 淮、简水生 2003 物理学报 52 609]

    [15]

    Shu X W, Huang D X, Deng G H, Shi W, Jiang S 2000 Acta Phys. Sin. 49 1731 (in Chinese) [舒学文、黄德修、邓桂华、施 伟、江 山 2000 物理学报 49 1731]

    [16]

    Ouellette F, Cliche J F, Gagnon S 1994 J. Lightwave Technol. 12 1728

    [17]

    Weller-Brophy L A, Hall D G 1985 J. Opt. Soc. Am. A 2 864

    [18]

    Weller-Brophy L A, Hall D G 1988 Appl. Opt. 27 963

    [19]

    Kashyap R 1999 Fiber Bragg Gratings (San Diego: Academic Press)

    [20]

    Zheng J L, Wang R, Fang T, Lu L, Pu T, Chen X F 2009 Acta Phys. Sin. 58 7017 (in Chinese) [郑吉林、王 荣、方 涛、卢 麟、蒲 涛、陈向飞 2009 物理学报 58 7017]

    [21]

    Mazzetto E, Someda C G, Acebron J A, Spigler R 2005 Opt. Quantum Electron. 37 755

    [22]

    Marcuse D 1974 Theory of Dielectric Optical Waveguide (New York: Academic Press)

    [23]

    Fang J X, Cao Z Q, Yang F Z 1987 Physical Foundation of Optical Waveguide Technology (Shanghai: Shanghai Jiaotong University Press)(in Chinese)[方俊鑫、曹庄琪、杨傅子 1987光波导技术物理基础 (上海:上海交通大学出版社)]

    [24]

    Shu X W 2000 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [舒学文 2000 博士学位论文 (武汉:华中理工大学)]

  • [1]

    Lam D K W, Garside B K 1981 Appl. Opt. 20 440

    [2]

    Yamada M, Sakuda K 1987 Appl. Opt. 26 3474

    [3]

    Poladian L 1993 Phys. Rev. E 48 4758

    [4]

    Bouzid A, Abushagur M A G 1997 Appl. Opt. 36 558

    [5]

    Peral E, Capmany J 1997 J. Lightwave Technol. 15 1295

    [6]

    Kogelnik H 1976 Bell Sys. Tech. J. 55 109

    [7]

    Kogelnik H 1990 Theory of Optical Waveguides in Guided-wave Optoelectronics (Berlin: Springer-Verlag)

    [8]

    Erdogan T, Sipe J E 1996 J. Opt. Soc. Am. A 13 296

    [9]

    Erdogan T 1997 J. Opt. Soc. Am. A 14 1760

    [10]

    Erdogan T 1997 J. Lightwave Technol. 15 1277

    [11]

    Lee K S, Erdogan T 2001 Electron. Lett. 37 156

    [12]

    Wang Y H, Ren W H, Liu Y, Tan Z W, Jian S S 2008 Acta Phys. Sin. 57 363 (in Chinese) [王燕花、任文华、刘 艳、谭中伟、简水生 2008 物理学报 57 363]

    [13]

    Qiu K, Wu B J, Wen F 2009 Acta Phys. Sin. 58 1726 (in Chinese) [邱 昆、武保剑、文 峰 2009 物理学报 58 1726]

    [14]

    Wang M G, Wei H, Jian S S 2003 Acta Phys. Sin. 52 609 (in Chinese) [王目光、魏 淮、简水生 2003 物理学报 52 609]

    [15]

    Shu X W, Huang D X, Deng G H, Shi W, Jiang S 2000 Acta Phys. Sin. 49 1731 (in Chinese) [舒学文、黄德修、邓桂华、施 伟、江 山 2000 物理学报 49 1731]

    [16]

    Ouellette F, Cliche J F, Gagnon S 1994 J. Lightwave Technol. 12 1728

    [17]

    Weller-Brophy L A, Hall D G 1985 J. Opt. Soc. Am. A 2 864

    [18]

    Weller-Brophy L A, Hall D G 1988 Appl. Opt. 27 963

    [19]

    Kashyap R 1999 Fiber Bragg Gratings (San Diego: Academic Press)

    [20]

    Zheng J L, Wang R, Fang T, Lu L, Pu T, Chen X F 2009 Acta Phys. Sin. 58 7017 (in Chinese) [郑吉林、王 荣、方 涛、卢 麟、蒲 涛、陈向飞 2009 物理学报 58 7017]

    [21]

    Mazzetto E, Someda C G, Acebron J A, Spigler R 2005 Opt. Quantum Electron. 37 755

    [22]

    Marcuse D 1974 Theory of Dielectric Optical Waveguide (New York: Academic Press)

    [23]

    Fang J X, Cao Z Q, Yang F Z 1987 Physical Foundation of Optical Waveguide Technology (Shanghai: Shanghai Jiaotong University Press)(in Chinese)[方俊鑫、曹庄琪、杨傅子 1987光波导技术物理基础 (上海:上海交通大学出版社)]

    [24]

    Shu X W 2000 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [舒学文 2000 博士学位论文 (武汉:华中理工大学)]

  • [1] 闫忠宝, 孙帅, 张帅, 张尧, 史伟, 盛泉, 史朝督, 张钧翔, 张贵忠, 姚建铨. 二氧化钒相变对太赫兹反谐振光纤谐振特性的影响及其应用. 物理学报, 2021, 70(16): 168701. doi: 10.7498/aps.70.20210084
    [2] 彭婕, 张嗣杰, 王苛, DoveMartin. 经式8-羟基喹啉铝的光谱与激发性质密度泛函. 物理学报, 2020, 69(2): 023101. doi: 10.7498/aps.69.20191453
    [3] 刘家兴, 刘侠, 钟守东, 王健强, 张大鹏, 王兴龙. 光纤光栅对的参数匹配与激光输出特性. 物理学报, 2019, 68(11): 114205. doi: 10.7498/aps.68.20190178
    [4] 李世雄, 张正平, 隆正文, 秦水介. 硼球烯B40在外电场下的基态性质和光谱特性. 物理学报, 2017, 66(10): 103102. doi: 10.7498/aps.66.103102
    [5] 江鹏, 毕卫红, 齐跃峰, 付兴虎, 武洋, 田朋飞. 光子晶体光纤重叠光栅理论模型与光谱特性研究. 物理学报, 2016, 65(20): 204208. doi: 10.7498/aps.65.204208
    [6] 孙成明, 赵飞, 袁艳. 基于光谱的天基空间点目标特征提取与识别. 物理学报, 2015, 64(3): 034202. doi: 10.7498/aps.64.034202
    [7] 吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋. 外电场下CdSe的基态性质和光谱特性研究. 物理学报, 2015, 64(15): 153102. doi: 10.7498/aps.64.153102
    [8] 刘一客, 刘禹彤, 许向东, 闫微, 马淼, 朱宏钊, 马春前, 邹蕊矫, 丁廉, 罗梦佳. 棕树叶的形貌、成分及光谱特性研究. 物理学报, 2015, 64(6): 068701. doi: 10.7498/aps.64.068701
    [9] 谢辰, 胡明列, 徐宗伟, 兀伟, 高海峰, 张大鹏, 秦鹏, 王艺森, 王清月. 光纤激光器直接输出的高功率贝塞尔超短脉冲. 物理学报, 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [10] 刘超, 裴丽, 李卓轩, 宁提纲, 高嵩, 康泽新, 孙将. 光纤布拉格光栅型全光纤声光调制器的特性研究. 物理学报, 2013, 62(3): 034208. doi: 10.7498/aps.62.034208
    [11] 李丽君, 马辉, 张艳亮, 隋涛, 来永政, 李晶, 曹茂永. 单轴晶体包层光纤Bragg光栅反射谱特性模拟研究. 物理学报, 2012, 61(13): 130201. doi: 10.7498/aps.61.130201
    [12] 刘自军, 杨旅云, 陈乔乔, 余阳, 戴能利, 李进延. 用于可见照明的超宽带黄色荧光玻璃. 物理学报, 2012, 61(23): 237803. doi: 10.7498/aps.61.237803
    [13] 王森, 周亚训, 戴世勋, 王训四, 沈祥, 陈飞飞, 徐星辰. Er3+/Ce3+共掺碲铋酸盐玻璃的制备及光谱特性提高研究. 物理学报, 2012, 61(10): 107802. doi: 10.7498/aps.61.107802
    [14] 曾祥楷, 饶云江. 长周期光纤光栅傅里叶模式耦合理论. 物理学报, 2010, 59(12): 8607-8614. doi: 10.7498/aps.59.8607
    [15] 邱昆, 武保剑, 文峰. 磁光光纤Bragg光栅中圆偏振光的非线性传输特性. 物理学报, 2009, 58(3): 1726-1730. doi: 10.7498/aps.58.1726
    [16] 朱涛, 史翠华, 饶云江, 郑建成. CO2激光写入长周期光纤光栅的折变理论及实验研究. 物理学报, 2009, 58(9): 6316-6322. doi: 10.7498/aps.58.6316
    [17] 蔡璐璐, 尹闻闻, 吴 飞. 均匀光纤Bragg光栅局部横向受力特性研究. 物理学报, 2008, 57(12): 7737-7746. doi: 10.7498/aps.57.7737
    [18] 张 艳, 文 侨, 张 彬. 部分相干平顶光束在线性增益(损耗)介质中的光谱特性. 物理学报, 2006, 55(9): 4962-4967. doi: 10.7498/aps.55.4962
    [19] 张春书, 开桂云, 王 志, 王 超, 孙婷婷, 张伟刚, 刘艳格, 刘剑飞, 袁树忠, 董孝义. 柚子型微结构光纤Bragg光栅温度和应变传感特性研究. 物理学报, 2005, 54(6): 2758-2763. doi: 10.7498/aps.54.2758
    [20] 王淮生, 孙大睿, 张志刚, 柴 路, 王清月. 啁啾飞秒激光脉冲形成的光纤光栅的Bragg反射特性. 物理学报, 2003, 52(9): 2185-2189. doi: 10.7498/aps.52.2185
计量
  • 文章访问数:  8354
  • PDF下载量:  1192
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-02
  • 修回日期:  2010-05-17
  • 刊出日期:  2010-06-05

Bragg光纤光栅傅里叶模式耦合理论

  • 1. (1)重庆大学光电技术与系统教育部重点实验室,重庆 400044;电子科技大学光纤传感与通信教育部重点实验室,成都 610054; (2)重庆理工大学电子信息与自动化学院,汽车零部件制造及检测技术教育部重点实验室,重庆 400050

摘要: 建立了Bragg光纤光栅傅里叶模式耦合理论.在分析光纤光栅的耦合模时,发现了耦合模式的振幅系数间存在傅里叶变换关系.推导了将傅里叶变换和模式耦合融合在一起的Bragg光纤光栅反射谱和透射谱的通用表达式.该理论是用傅里叶变换得到Bragg光纤光栅折射率微扰的空域谱,再对该空域谱进行模式耦合分析计算,从而得到Bragg光纤光栅的光谱特性.根据该理论,仿真分析了Bragg光纤光栅的谱特性,与耦合模理论、直接傅里叶变换法进行了对比分析.结果表明,傅里叶模式耦合理论与传统的耦合模理论及实际Bragg光纤光栅的光谱特性一致,具有简单、清晰、直接、精确和分析效率高的特点,可分析任意轴向折射率微扰分布的Bragg光纤光栅结构.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回