搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤光栅对的参数匹配与激光输出特性

刘家兴 刘侠 钟守东 王健强 张大鹏 王兴龙

引用本文:
Citation:

光纤光栅对的参数匹配与激光输出特性

刘家兴, 刘侠, 钟守东, 王健强, 张大鹏, 王兴龙

Fiber gratings matching and output characteristics of fiber laser

Liu Jia-Xing, Liu Xia, Zhong Shou-Dong, Wang Jian-Qiang, Zhang Da-Peng, Wang Xing-Long
PDF
HTML
导出引用
  • 高功率光纤激光器的激光输出特性优化, 对进一步提高光纤激光器的输出功率以及实际应用中的切割、加工质量具有重要意义. 斜率效率、背向漏光以及受激拉曼散射是高功率光纤激光器设计中较为关心的输出特性参数. 作为核心器件, 光纤光栅对的参数设计与匹配, 会直接影响到整个激光系统的性能. 本文旨在探究光纤光栅对的参数匹配对激光输出特性的影响, 先是通过理论分析分别阐述了斜率效率、背向漏光以及受激拉曼散射的来源与相互关系; 然后通过实验设计, 采取了两组不同参数光纤光栅对组合, 从实验上分别探究了低反光纤光栅的光谱带宽以及反射率对激光输出特性的影响. 最后得出了光纤光栅对的优化参数与匹配原则, 为提高连续光纤激光器的激光输出特性提供了理论支持与参考价值.
    In order to improve the output power and processing quality in industrial applications, it is important to optimize the output characteristics of the high-power fiber lasers. The slope efficiency, backward leaking power and stimulated Raman scattering are key issues in high-power fiber laser design. The parameters matching the fiber gratings, which are the critical components, have a direct influence on the whole fiber laser system. In this paper, the parameters matching the fiber gratings in fiber lasers are investigated. Firstly, the origin of slope efficiency, backward leaking power and stimulated Raman scattering are analyzed in theory. Then the influences on output characteristics of fiber lasers comprised of the output coupler gratings, which have different bandwidths and reflectivities, are experimentally studied. Finally, the optimized parameters and matching principle of fiber gratings in high-power fiber laser are obtained , thus providing an alternative method to improve the output characteristics of high-power continuous wave fiber laser.
      通信作者: 刘家兴, ericliu@fiber-resources.com
      Corresponding author: Liu Jia-Xing, ericliu@fiber-resources.com
    [1]

    Demtroder W 2009 Laser Spectroscopy (3rd Ed.) (Berlin: Springer-Verlag) pp851−892

    [2]

    Duarte FJ 2009 Tunable Laser Applications (2nd Ed.) (Boca Raton: CRC Press) pp1−14

    [3]

    Hashemzaden M, Suder W, Williams S, Powell J, Kaplan A F H, Voisey K T 2014 Phys. Procedia 56 909Google Scholar

    [4]

    Zervas M N 2014 Int. J. Mod. Phys. B 28 12Google Scholar

    [5]

    Zhou H, Chen Z, Zhou X, Hou J, Chen J 2015 Opt. Commun. 347 137Google Scholar

    [6]

    Holehouse N, Magne J, Auger M, Quebec M 2015 Proc. SPIE 9344 93441FGoogle Scholar

    [7]

    Jeong Y, Sahu J K, Payne D N 2004 Opt. Express 12 25Google Scholar

    [8]

    IPG Photonics successfully tests world’s first 10 kilowatt single-mode producion laser. http://www.ipgphotonics.com [2009-6-16]

    [9]

    NukW: Kilowatt laser ampifier platform http://www.nufern. com [2012-4-12]

    [10]

    周军, 楼祺洪, 朱健强 2006 光学学报 26 1119Google Scholar

    Zhou J, Lou Q H, Zhu J Q 2006 Acta Opt. Sin. 26 1119Google Scholar

    [11]

    李晨, 闫平, 陈刚 2006 中国激光 33 738

    Li C, Yan P, Chen G 2006 Chinese Journal of Lasers 33 738 (in Chinese)

    [12]

    李伟, 武子淳, 陈曦 2006 强激光与粒子束 18 890

    Li W, Wu Z C, Chen X 2006 High Power Laser and Particle Beams 18 890

    [13]

    楼祺洪, 何兵, 薛宇豪 2009 中国激光 36 1277

    Lou Q H, He B, Xue Y H 2009 Chinese Journal of Lasers 36 1277 (in Chinese)

    [14]

    任亚杰 2012 硕士学位论文(长沙: 国防科技大学)

    Ren Y J 2012 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)

    [15]

    Zhan H, Liu Q Y, Wang Y Y, Ke W W, Ni L, Wang X L, Peng K, Gao C, Li Y W, Lin H H, Wang J J, Jing F, Lin A X 2016 Opt. Express 24 24Google Scholar

    [16]

    Raman K 2010 Fiber Bragg Gratings (2nd Ed.) (USA: Academic Press) pp119−180

    [17]

    Wang J H, Chen G, Zhang L, Hu J M, Li J Y, He B, Chen J B, Gu X J, Zhou J, Feng Y 2012 Appl. Opt. 51 29Google Scholar

    [18]

    Xiao H, Leng J Y, Zhang H W, Huang L J, Xu J M, Zhou P 2015 Appl. Opt. 54 27Google Scholar

    [19]

    Agrawal G P 1995 Nonlinear Fiber Optics (USA: Academic Press) p300

    [20]

    Schreiber T, Liem A, Freier E, Matzdorf C, Eberhardt R, Jauregui C, Limpert J, Tunnermann A 2018 Proc. SPIE 8961 89611T-1Google Scholar

    [21]

    Tao R M, Xiao H, Zhang H W, Leng J Y, Wang X L, Zhou P, Xu X J 2018 Opt. Express 26 19Google Scholar

    [22]

    Xu H Y, Jiang M, Shi C, Zhou P, Zhao G M, Gu X J 2017 Appl. Opt. 56 12Google Scholar

    [23]

    Liem A, Freier E, Matzdorf C, Reichel V, Schreiber T, Eberhardt R, Tunnermann A 2013 Advanced Solid-State Lasers Congress Technical Digest Paris, France, October 27−November 1, 2013 JTh2A.32

    [24]

    Ido K, Amos A H 1998 IEEE J. Quantum Electron. 34 9

    [25]

    Wang W C, Li L X, Chen D D, Zhang Q Y 2016 Sci. Rep. 6 31761Google Scholar

    [26]

    Li Y H, Yang M W, Wang D N, Lu J, Sun T, Grattan K T V 2009 Opt. Express 17 22Google Scholar

  • 图 1  受激拉曼散射过程能级示意图

    Fig. 1.  Energy level of the stimulated Raman scattering process

    图 2  当信号光与受激拉曼散射光同偏振时, 熔融石英在波长为1 μm附近的归一化拉曼增益曲线

    Fig. 2.  Raman-gain spectrum for fused silica at the pump wavelength of 1 μm

    图 3  光纤激光器光路简图

    Fig. 3.  Diagram of fiber laser

    图 4  高功率连续光纤激光器实验光路图 PC, 抽运光合束器; HR, 高反光纤光栅; OC, 低反光纤光栅; YDF, 有源光纤; GDF, 无源光纤; CPS, 包层光滤除器; QBH, 输出准直头; G, 分光玻璃片; OSA, 光谱分析仪; PM1, PM2, 光功率计

    Fig. 4.  Diagram of high power continue wave fiber laser in experiment. PC, pump combiner; HR, high reflection fiber grating; OC, low reflection fiber grating; YDF, active fiber; GDF, passive fiber; CPS, cladding power stripper; QBH, quartz block head of a fiber optics cable; G, beam splitter; OSA, spectrum analyzer; PM1 and PM2, power meters.

    图 5  第一组光纤光栅光谱图 (a)为高反光栅透射谱; (b)为低反光栅反射谱

    Fig. 5.  Spectra of the first group of fiber gratings: (a) Transmission spectrum of the high reflection grating; (b) reflection spectrum of the low reflection grating

    图 6  第二组光纤光栅光谱图 (a)为高反光栅透射谱; (b)为低反光栅反射谱

    Fig. 6.  Spectra of the second group of fiber gratings: (a) Transmission spectrum of the high reflection grating; (b) reflection spectrum of the low reflection grating

    图 7  不同光谱带宽低反光栅激光输出特性 (a)输出功率曲线; (b) 背向漏光曲线

    Fig. 7.  Output characteristics of the fiber laser with low reflection gratings of different bandwidth: (a) Output power curve; (b) backward leaked power curve

    图 8  不同光谱宽度的低反光栅输出光谱特性 (a)低反光栅光谱宽度为0.78 nm; (b) 低反光栅光谱宽度为0.91 nm; (c) 低反光栅光谱宽度为1.0 nm; (d) 低反光栅光谱宽度为1.31 nm

    Fig. 8.  Spectra of output laser with low reflection gratings of different bandwidth: (a) 0.78 nm bandwidth; (b) 0.91 nm bandwidth; (c) 1.0 nm bandwidth; (d) 1.31 nm bandwidth

    图 9  同等输出功率(840 W)下, 不同光谱宽度的低反光栅受激拉曼散射峰对比图

    Fig. 9.  Stimulated Raman scattering of low reflection gratings with different bandwidth at the output power of 840 W

    图 10  不同反射率低反光栅激光输出特性 (a)输出功率曲线; (b) 背向漏光曲线

    Fig. 10.  Output characteristics of the fiber laser with low reflection gratings of different reflectivity: (a) Output power curve; (b) backward leaked power curve

    图 11  背向漏光光谱图(OC: 10%, 1.0 nm)

    Fig. 11.  Spectrum of the leaked laser with OC of 10% reflectivity and 1.0 nm bandwidth

    图 12  不同反射率的低反光栅输出光谱特性 (a)反射率为2.6%; (b) 反射率为5.2%; (c) 反射率为10.3%; (d) 反射率为11.6%

    Fig. 12.  Spectra of output laser with low reflection gratings of different reflectivity: (a) 2.6%; (b) 5.2%; (c) 10.3%; (d) 11.6%

    图 13  同等输出功率水平下(840 W), 不同反射率的低反光栅受激拉曼散射效应对比图

    Fig. 13.  Stimulated Raman scattering of low reflection gratings with different reflectivity at the output power of 840 W

    图 14  (a)反射率为2.5%, 光谱带宽为1.0 nm的OC光谱图; (b)输出功率为840 W时的输出激光光谱图

    Fig. 14.  (a) Reflection spectrum of the OC of 2.5% reflectivity and 1.0 nm bandwidth; (b) spectrum of the output laser at the output power of 840 W

  • [1]

    Demtroder W 2009 Laser Spectroscopy (3rd Ed.) (Berlin: Springer-Verlag) pp851−892

    [2]

    Duarte FJ 2009 Tunable Laser Applications (2nd Ed.) (Boca Raton: CRC Press) pp1−14

    [3]

    Hashemzaden M, Suder W, Williams S, Powell J, Kaplan A F H, Voisey K T 2014 Phys. Procedia 56 909Google Scholar

    [4]

    Zervas M N 2014 Int. J. Mod. Phys. B 28 12Google Scholar

    [5]

    Zhou H, Chen Z, Zhou X, Hou J, Chen J 2015 Opt. Commun. 347 137Google Scholar

    [6]

    Holehouse N, Magne J, Auger M, Quebec M 2015 Proc. SPIE 9344 93441FGoogle Scholar

    [7]

    Jeong Y, Sahu J K, Payne D N 2004 Opt. Express 12 25Google Scholar

    [8]

    IPG Photonics successfully tests world’s first 10 kilowatt single-mode producion laser. http://www.ipgphotonics.com [2009-6-16]

    [9]

    NukW: Kilowatt laser ampifier platform http://www.nufern. com [2012-4-12]

    [10]

    周军, 楼祺洪, 朱健强 2006 光学学报 26 1119Google Scholar

    Zhou J, Lou Q H, Zhu J Q 2006 Acta Opt. Sin. 26 1119Google Scholar

    [11]

    李晨, 闫平, 陈刚 2006 中国激光 33 738

    Li C, Yan P, Chen G 2006 Chinese Journal of Lasers 33 738 (in Chinese)

    [12]

    李伟, 武子淳, 陈曦 2006 强激光与粒子束 18 890

    Li W, Wu Z C, Chen X 2006 High Power Laser and Particle Beams 18 890

    [13]

    楼祺洪, 何兵, 薛宇豪 2009 中国激光 36 1277

    Lou Q H, He B, Xue Y H 2009 Chinese Journal of Lasers 36 1277 (in Chinese)

    [14]

    任亚杰 2012 硕士学位论文(长沙: 国防科技大学)

    Ren Y J 2012 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)

    [15]

    Zhan H, Liu Q Y, Wang Y Y, Ke W W, Ni L, Wang X L, Peng K, Gao C, Li Y W, Lin H H, Wang J J, Jing F, Lin A X 2016 Opt. Express 24 24Google Scholar

    [16]

    Raman K 2010 Fiber Bragg Gratings (2nd Ed.) (USA: Academic Press) pp119−180

    [17]

    Wang J H, Chen G, Zhang L, Hu J M, Li J Y, He B, Chen J B, Gu X J, Zhou J, Feng Y 2012 Appl. Opt. 51 29Google Scholar

    [18]

    Xiao H, Leng J Y, Zhang H W, Huang L J, Xu J M, Zhou P 2015 Appl. Opt. 54 27Google Scholar

    [19]

    Agrawal G P 1995 Nonlinear Fiber Optics (USA: Academic Press) p300

    [20]

    Schreiber T, Liem A, Freier E, Matzdorf C, Eberhardt R, Jauregui C, Limpert J, Tunnermann A 2018 Proc. SPIE 8961 89611T-1Google Scholar

    [21]

    Tao R M, Xiao H, Zhang H W, Leng J Y, Wang X L, Zhou P, Xu X J 2018 Opt. Express 26 19Google Scholar

    [22]

    Xu H Y, Jiang M, Shi C, Zhou P, Zhao G M, Gu X J 2017 Appl. Opt. 56 12Google Scholar

    [23]

    Liem A, Freier E, Matzdorf C, Reichel V, Schreiber T, Eberhardt R, Tunnermann A 2013 Advanced Solid-State Lasers Congress Technical Digest Paris, France, October 27−November 1, 2013 JTh2A.32

    [24]

    Ido K, Amos A H 1998 IEEE J. Quantum Electron. 34 9

    [25]

    Wang W C, Li L X, Chen D D, Zhang Q Y 2016 Sci. Rep. 6 31761Google Scholar

    [26]

    Li Y H, Yang M W, Wang D N, Lu J, Sun T, Grattan K T V 2009 Opt. Express 17 22Google Scholar

计量
  • 文章访问数:  8906
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-30
  • 修回日期:  2019-02-28
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回