搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光纤光栅的冲击激励声发射响应机理与定位方法研究

张法业 姜明顺 隋青美 吕珊珊 贾磊

引用本文:
Citation:

基于光纤光栅的冲击激励声发射响应机理与定位方法研究

张法业, 姜明顺, 隋青美, 吕珊珊, 贾磊

Acoustic emission localization technique based on fiber Bragg grating sensing network and signal feature reconstruction

Zhang Fa-Ye, Jiang Ming-Shun, Sui Qing-Mei, Lü Shan-Shan, Shan Jia
PDF
导出引用
  • 在对冲击激励声发射应力波在铝合金板上的传播机理进行分析的基础上,利用ABAQUS软件构建了钢球冲击铝合金板几何模型,仿真分析了冲击应力波传播过程.理论分析了冲击应力波与FBG传感器的作用机理,基于边缘滤波原理构建了声发射传感系统,采集冲击激励声发射应力波,建立了声发射区域定位模型,提出了基于扩散映射与支持向量机(SVM)的声发射区域定位方法并进行了实验验证.在300 mm300 mm2 mm的铝合金板上对36个测试区域进行了多次声发射区域定位实验,实验结果表明,扩散映射结合SVM的定位结果较优,区域定位精度为30 mm30 mm,定位正确率为97.5%,耗时0.781 s.研究结果为声发射区域定位检测提供了一种有效方法.
    Based on the analysis of the propagation mechanism of acoustic emission stress waves caused by impact excitation on aluminum alloy plates, The geometrical model of steel ball impacted aluminum alloy plate was built by ABAQUS software, and the stress wave propagation process is simulated and analyzed. The stress wave propagation process is simulated and analyzed and an acoustic emission sensing system based on the principle of edge filtering is constructed. The acoustic emission stress waves were collected to establish the acoustic emission region localization model. The localization method of acoustic emission region based on diffusion mapping and support vector machine is proposed and verified experimentally. Multiple acoustic emission localization experiments were performed on an aluminum alloy plate of 300 mm300 mm2 mm, which was divided into 36 test area. The results show that the localization accuracy is 30 mm30 mm and the positioning accuracy was 97.5%, while consuming 0.781 s. The study provides an effective method for acoustic emission localization.
      通信作者: 隋青美, jiangmingshun@sdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:41472260)、山东省自然科学基金(批准号:ZR2014FM025)、山东大学基本科研业务费资助项目(批准号:2016JC012)和山东大学青年学者未来计划项目(批准号:2016WLJH30)资助的课题.
      Corresponding author: Sui Qing-Mei, jiangmingshun@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41472260), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014FM025), the Fundamental Research Funds of Shandong University, China (Grant No. 2016JC012), and the Young Scholars Program of Shandong University, China (Grant No. 2016WLJH30).
    [1]

    Zhang J R, Ma H Y, Yan W J, Li Z J 2016 Appl. Acoust. 105 67

    [2]

    Loutas T H, Panopoulou A, Roulias D, Kostopoulos V 2012 Expert Syst. Appl. 39 8412

    [3]

    Wiggins S M, Leifer I, Linke P, Hildebrand J A 2015 Marine and Petroleum Geology 68 776

    [4]

    Fu T 2014 Ph. D. Dissertation (Haerbin:Harbin Institute of Technology) (in Chinese)[付涛2014博士学位论文(哈尔滨:哈尔滨工业大学)]

    [5]

    Yu F M, Okabe Y, Wu Q, Shigeta N 2016 Composites Sci. Technol. 135 116

    [6]

    Gao X, Zhang X P, Li N, Xin P 2014 Asia-Pacific International Symposium on Aerospace Technology China September 24-36, 2014 p1203

    [7]

    Munoz V, Vales B, Perrin M, Pastor M, Welmane H, Cantarel A, Karama M 2016 Composites Part B 85 68

    [8]

    Shrestha P, Kim J, Park Y, Kim C 2015 Composite Struct. 125 159

    [9]

    Hafizi Z, Epaarachchi J, Lau K 2015 Measurement 61 51

    [10]

    Jiang M S, Sui Q M, Jia L, Peng P, Cao Y Q 2012 Optoelectron. Lett. 8 220

    [11]

    Cheng X M, Zhang X D, Zhao L, Deng A D, Bao Y Q, Liu Y, Jiang Y L 2014 Comptes Rendus Mecanique 342 229

    [12]

    Jiang Y, Xu F Y, Xu B S 2015 Mechanical Systems and Signal Processing 64 452

    [13]

    Sadegh H, Mehdi A, Mehdi A 2016 Tribology International 95 426

    [14]

    Li Z B, Ma H L, Cao Z S, Sun M G, Huang Y B, Zhu W Y, Liu Q 2016 Acta Phys. Sin. 65 053301 (in Chinese)[李志彬, 马宏亮, 曹振松, 孙明国, 黄印博, 朱文越, 刘强2016物理学报65 053301]

    [15]

    Jin Z W 2014 M. S. Dissertation (Shandong:Shandong University) (in Chinese)[金中薇2014硕士学位论文(山东:山东大学)]

    [16]

    Cao Y, Pei Y W, Tong Z R 2014 Acta Phys. Sin. 63 024206(in Chinese) (in Chinese)[曹晔, 裴庸惟, 童峥嵘2014物理学报63 024206]

    [17]

    Gu B, Sun X, Sheng V S 2016 IEEE Trans. Neural Networks Learning Systems 1 1

    [18]

    Scholkopf B, Smola A, Williamson R, Bartlett 2000 Neural Comput. 15 1207

    [19]

    Lafon S, Lee A B 2006 IEEE Trans. Pattern Anal. Machine Intellig. 28 1393

    [20]

    Nadler B, Lafon S, Coifman R R, Kevrekidis I G 2006 Appl. Computat. Harmonic Anal. 21 113

    [21]

    Jia B, Yu B T, Wu Q, Yang X S, Wei C F, Law R, Fu S 2016 Neurocomputing 189 106

  • [1]

    Zhang J R, Ma H Y, Yan W J, Li Z J 2016 Appl. Acoust. 105 67

    [2]

    Loutas T H, Panopoulou A, Roulias D, Kostopoulos V 2012 Expert Syst. Appl. 39 8412

    [3]

    Wiggins S M, Leifer I, Linke P, Hildebrand J A 2015 Marine and Petroleum Geology 68 776

    [4]

    Fu T 2014 Ph. D. Dissertation (Haerbin:Harbin Institute of Technology) (in Chinese)[付涛2014博士学位论文(哈尔滨:哈尔滨工业大学)]

    [5]

    Yu F M, Okabe Y, Wu Q, Shigeta N 2016 Composites Sci. Technol. 135 116

    [6]

    Gao X, Zhang X P, Li N, Xin P 2014 Asia-Pacific International Symposium on Aerospace Technology China September 24-36, 2014 p1203

    [7]

    Munoz V, Vales B, Perrin M, Pastor M, Welmane H, Cantarel A, Karama M 2016 Composites Part B 85 68

    [8]

    Shrestha P, Kim J, Park Y, Kim C 2015 Composite Struct. 125 159

    [9]

    Hafizi Z, Epaarachchi J, Lau K 2015 Measurement 61 51

    [10]

    Jiang M S, Sui Q M, Jia L, Peng P, Cao Y Q 2012 Optoelectron. Lett. 8 220

    [11]

    Cheng X M, Zhang X D, Zhao L, Deng A D, Bao Y Q, Liu Y, Jiang Y L 2014 Comptes Rendus Mecanique 342 229

    [12]

    Jiang Y, Xu F Y, Xu B S 2015 Mechanical Systems and Signal Processing 64 452

    [13]

    Sadegh H, Mehdi A, Mehdi A 2016 Tribology International 95 426

    [14]

    Li Z B, Ma H L, Cao Z S, Sun M G, Huang Y B, Zhu W Y, Liu Q 2016 Acta Phys. Sin. 65 053301 (in Chinese)[李志彬, 马宏亮, 曹振松, 孙明国, 黄印博, 朱文越, 刘强2016物理学报65 053301]

    [15]

    Jin Z W 2014 M. S. Dissertation (Shandong:Shandong University) (in Chinese)[金中薇2014硕士学位论文(山东:山东大学)]

    [16]

    Cao Y, Pei Y W, Tong Z R 2014 Acta Phys. Sin. 63 024206(in Chinese) (in Chinese)[曹晔, 裴庸惟, 童峥嵘2014物理学报63 024206]

    [17]

    Gu B, Sun X, Sheng V S 2016 IEEE Trans. Neural Networks Learning Systems 1 1

    [18]

    Scholkopf B, Smola A, Williamson R, Bartlett 2000 Neural Comput. 15 1207

    [19]

    Lafon S, Lee A B 2006 IEEE Trans. Pattern Anal. Machine Intellig. 28 1393

    [20]

    Nadler B, Lafon S, Coifman R R, Kevrekidis I G 2006 Appl. Computat. Harmonic Anal. 21 113

    [21]

    Jia B, Yu B T, Wu Q, Yang X S, Wei C F, Law R, Fu S 2016 Neurocomputing 189 106

  • [1] 梁可达, 刘滕飞, 常哲, 张猛, 李志鑫, 黄松松, 王晶. 基于最小二乘法和支持向量机的海洋内孤立波传播速度反演模型. 物理学报, 2023, 72(2): 028301. doi: 10.7498/aps.72.20221633
    [2] 张毅军, 慕晓冬, 郭乐勐, 张朋, 赵导, 白文华. 一种基于量子线路的支持向量机训练方案. 物理学报, 2023, 72(7): 070302. doi: 10.7498/aps.72.20222003
    [3] 宋堃, 高太长, 刘西川, 印敏, 薛杨. 基于支持向量机的微波链路雨强反演方法. 物理学报, 2015, 64(24): 244301. doi: 10.7498/aps.64.244301
    [4] 赵志刚, 张纯杰, 苟向锋, 桑虎堂. 基于粒子群优化支持向量机的太阳电池温度预测. 物理学报, 2015, 64(8): 088801. doi: 10.7498/aps.64.088801
    [5] 孟庆芳, 陈珊珊, 陈月辉, 冯志全. 基于递归量化分析与支持向量机的癫痫脑电自动检测方法. 物理学报, 2014, 63(5): 050506. doi: 10.7498/aps.63.050506
    [6] 于洋, 郝中骐, 李常茂, 郭连波, 李阔湖, 曾庆栋, 李祥友, 任昭, 曾晓雁. 支持向量机算法在激光诱导击穿光谱技术塑料识别中的应用研究. 物理学报, 2013, 62(21): 215201. doi: 10.7498/aps.62.215201
    [7] 赵永平, 张丽艳, 李德才, 王立峰, 蒋洪章. 过滤窗最小二乘支持向量机的混沌时间序列预测. 物理学报, 2013, 62(12): 120511. doi: 10.7498/aps.62.120511
    [8] 行鸿彦, 祁峥东, 徐伟. 基于选择性支持向量机集成的海杂波背景中的微弱信号检测. 物理学报, 2012, 61(24): 240504. doi: 10.7498/aps.61.240504
    [9] 王芳芳, 张业荣. 基于支持向量机的电磁逆散射方法. 物理学报, 2012, 61(8): 084101. doi: 10.7498/aps.61.084101
    [10] 阎晓妹, 刘丁. 基于最小二乘支持向量机的分数阶混沌系统控制. 物理学报, 2010, 59(5): 3043-3048. doi: 10.7498/aps.59.3043
    [11] 王革丽, 杨培才, 毛宇清. 基于支持向量机方法对非平稳时间序列的预测. 物理学报, 2008, 57(2): 714-719. doi: 10.7498/aps.57.714
    [12] 蔡俊伟, 胡寿松, 陶洪峰. 基于选择性支持向量机集成的混沌时间序列预测. 物理学报, 2007, 56(12): 6820-6827. doi: 10.7498/aps.56.6820
    [13] 张家树, 党建亮, 李恒超. 时空混沌序列的局域支持向量机预测. 物理学报, 2007, 56(1): 67-77. doi: 10.7498/aps.56.67
    [14] 朱 涛, 饶云江, 莫秋菊. 基于超长周期光纤光栅的高灵敏度扭曲传感器. 物理学报, 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
    [15] 叶美盈. 基于最小二乘支持向量机建模的混沌系统控制. 物理学报, 2005, 54(1): 30-34. doi: 10.7498/aps.54.30
    [16] 叶美盈, 汪晓东, 张浩然. 基于在线最小二乘支持向量机回归的混沌时间序列预测. 物理学报, 2005, 54(6): 2568-2573. doi: 10.7498/aps.54.2568
    [17] 刘 涵, 刘 丁, 任海鹏. 基于最小二乘支持向量机的混沌控制. 物理学报, 2005, 54(9): 4019-4025. doi: 10.7498/aps.54.4019
    [18] 崔万照, 朱长纯, 保文星, 刘君华. 基于模糊模型支持向量机的混沌时间序列预测. 物理学报, 2005, 54(7): 3009-3018. doi: 10.7498/aps.54.3009
    [19] 崔万照, 朱长纯, 保文星, 刘君华. 混沌时间序列的支持向量机预测. 物理学报, 2004, 53(10): 3303-3310. doi: 10.7498/aps.53.3303
    [20] 乔学光, 贾振安, 傅海威, 李 明, 周 红. 光纤光栅温度传感理论与实验. 物理学报, 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
计量
  • 文章访问数:  5123
  • PDF下载量:  268
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-09
  • 修回日期:  2017-03-27
  • 刊出日期:  2017-04-05

/

返回文章
返回