搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于量子线路的支持向量机训练方案

张毅军 慕晓冬 郭乐勐 张朋 赵导 白文华

引用本文:
Citation:

一种基于量子线路的支持向量机训练方案

张毅军, 慕晓冬, 郭乐勐, 张朋, 赵导, 白文华

A support vector machine training scheme based on quantum circuits

Zhang Yi-Jun, Mu Xiao-Dong, Guo Le-Meng, Zhang Peng, Zhao Dao, Bai Wen-Hua
PDF
HTML
导出引用
  • 本文针对支持向量机提出一种基于量子态内积的量子线路训练方案. 该方案以量子基础力学理论为基础, 通过量子化, 生成支持向量机训练样本元素对应的量子态; 以量子初始基态和对应的量子逻辑门为基础, 构建可以实现训练样本元素量子态的量子线路; 通过建立量子态内积与SWAP量子逻辑门之间的关系, 采用量子态振幅的交换演化操作来实现量子态内积. 验证结果表明, 该方案不但使得支持向量机完成了正确分类, 还针对该方案的量子部分实现了在真实量子计算机上运行, 与经典算法相比, 多项式程度上降低了算法的时间复杂度, 扩展了支持向量机的训练思路.
    In order to improve the training efficiency of the support vector machine, a quantum circuit training scheme based on the inner product of the quantum state for the support vector machine is proposed in this work. Firstly, on the basis of the full analysis of the computational complexity of the classical support vector machine, the kernel function which is the main factor affecting the computational complexity of the algorithm is primarily analyzed. Based on quantum mechanics and quantum computing theory, the training sample elements in the kernel function are quantized to generate the corresponding quantum states. Secondly, according to the quantum states of the training sample elements, the types and quantities of the required quantum logic gates are derived and calculated, and the quantum circuit that can generate the corresponding quantum states of the training sample elements through the evolution of the quantum initial ground states and the quantum logic gates is designed. Then, in the light of the relationship between the inner product of the quantum state and the quantum logic gate SWAP, the quantum circuit is designed to complete the exchange operation of the corresponding quantum state amplitude. The inner product of the quantum state is realized by exchanging and evolving the amplitude of the quantum state in the quantum circuit. Finally, by measuring the quantum state of the controlling qubit, the inner product solution of the kernel function is obtained, and the acceleration effect of training support vector machine is realized. The verification results show that the scheme enables the support vector machine not only to complete the correct classification, but also to operate the quantum part of the scheme on the real quantum computer . Compared with the classical algorithm, the scheme reduces the time complexity of the algorithm for the polynomial degree, greatly shortens the training time of the model, and improves the efficiency of the algorithm. The scheme has certain feasibility, effectiveness and innovation, and expands the training idea of the support vector machine.
      通信作者: 白文华, baiwenhua@nudt.edu.cn
      Corresponding author: Bai Wen-Hua, baiwenhua@nudt.edu.cn
    [1]

    Cortes C, Vapnik V 1995 Mach. Learn. 20 273

    [2]

    Sebastian S, Matthias S, Christian S 2021 ACM J. Exp. Algor. 26 1

    [3]

    Vapnik V N 2000 The Nature of Statistical Learning Theory (New York: Springer-Verlag Press) pp25–314

    [4]

    Jiang F, Lu Y, Chen Y, Cai D, Li G F 2020 Comput. Electron. Agr. 179 105824Google Scholar

    [5]

    Zhang Q, Liu J M, Tian Y 2022 Optik 260 168807Google Scholar

    [6]

    Okwuashi O, Ndehedehe C E, Olayinka D N, Eyoh A, Attai H 2021 Int. J. Remote Sens. 42 6502

    [7]

    Kalaiarasi G, Maheswari S 2021 Neural Comput. Appl. 33 13391Google Scholar

    [8]

    Liu L M, Li P, Chu M X, Cai H B 2021 Int. J. Mach. Learn. Cyb. 12 2237Google Scholar

    [9]

    Reshma R, Pooja S, Suresh C 2018 Knowl. Based Syst. 139 64Google Scholar

    [10]

    Riyazuddin Y M, Basha S M, Reddy K K 2020 Int. J. Eng. Adv. Tech. 9 1336

    [11]

    Ma W Z, Cao Y, Bao W Z, Yang B, Chen Y H 2020 Sci. Programming-Neth 20 1

    [12]

    Cheng Y W, Fu L Y, Luo P, Ye Q L, Liu F, Zhu W 2020 Knowl. -Based Syst. 210 106488Google Scholar

    [13]

    Deen A J, Gyanchandani M 2020 Int. J. Adv. Comput. Sci. Appl. 11 187

    [14]

    Kumaresan T, Palanisamy C 2017 Int. J. Bio-Inspire. Com. 9 142Google Scholar

    [15]

    Chen Y 2020 Comput. Commun. 154 278Google Scholar

    [16]

    Lu Y L, Li J T, Yang Z H, Ou X F, Xie W W 2021 J. Comput. Methods Sci. 21 435

    [17]

    Tukan M, Baykal C, Feldman D, Rus D 2021 Theor. Comput. Sci. 890 171Google Scholar

    [18]

    Zhao J 2021 J. Phys. Conf. Ser. 1748 052006Google Scholar

    [19]

    Mangasarian O L, Wild E W 2006 IEEE T. Pattern Anal. 28 69Google Scholar

    [20]

    Zhang L, Suganthan P N 2015 IEEE T. Cybernetics 45 2165Google Scholar

    [21]

    Xu J, Tang Y Y, Zou B, Xu Z B, Li L Q, Lu Y, Zhang B C 2015 IEEE T. Cybernetics 45 1169Google Scholar

    [22]

    Zou B, Xu C, Lu Y, Tang Y Y, Xu J, You X G 2018 IEEE T. Neur. Net. Lear. 29 1328Google Scholar

    [23]

    Wu X H, Shi Z F, Xing H H, Xue Y S 2022 MATEC Web Conf. 355 03059Google Scholar

    [24]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [25]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang Y X, Zhang W J, Li H, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [26]

    Zhua Q L, Cao S R, Chen F S, et al. 2022 Sci. Bull. 67 240Google Scholar

    [27]

    Deshpande A, Mehta A, Vincent T, Quesada N, Hinsche M, Ioannou M, Madsen L, Lavoie J, Qi H Y, Eisert J, Hangleiter D, Fefferman B, Dhand I 2022 Sci. Adv. 8 eabi7894Google Scholar

    [28]

    Yuan X 2020 Science 369 1054Google Scholar

    [29]

    Zhang Y J, Mu X D, Liu X W, Wang X Y, Zhang X, Li K, Wu T Y, Zhao D, Dong C 2022 Appl. Soft Comput. 118 108554Google Scholar

    [30]

    Fan J N, Wu S X, Yu C S 2021 Quantum Inf. Process. 20 9Google Scholar

    [31]

    Huang S, Yin H L, Chen Z B, Wu S J 2022 arXiv: 2203.12884 v1

    [32]

    Booth K E C, O'Gorman B, Marshall J, Hadfield S, Rieffel E 2021 Quantum 5 550Google Scholar

    [33]

    Rujuta V, Nagraj D, Rajesh K, Akash S 2021 Knowl. Based Syst. 219 106859Google Scholar

    [34]

    Chen J W, Qi X M, Chen L F, Chen F L, Cheng G H 2020 Knowl. Based Syst. 203 106167Google Scholar

    [35]

    Lloyd S, Mohseni M, Rebentrost P 2013 arXiv: 1307.0411 v1

    [36]

    Rebentrost P, Mohseni M, Lloyd S 2014 Phys. Rev. Lett. 113 130503Google Scholar

    [37]

    Boser B E, Guyou I M, Vapnik V N 1992 Proceedings of the 5th Annual Workshop on Computational Learning Theory Pittsburgh Pennsylvania, USA, July 1–2, 1992 p144

    [38]

    Osuna E, Frenud R, Girosi F 1997 Proceedings of the 1997 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing VII Amelia Island, FL, USA, September 24–26, 1997 p276

    [39]

    Platt J C 1998 Advances in Kernel Methods-Support Vecotor Learning (Cambridge MA: MIT Press) pp41–65

    [40]

    Ralaivola L, Alché-Buc F D' 2001 Proceedings of International Conference on Artificial Neural Networks Vienna, Austria, August 21–25, 2001 p322

  • 图 1  制备量子态$\left|\varphi \right\rangle$的量子线路简略图

    Fig. 1.  The schematic diagram of the quantum circuit for preparing the quantum state $\left|\varphi \right\rangle$

    图 2  制备量子态$\left|\varphi \right\rangle$$\left|\phi \right\rangle$的量子线路

    Fig. 2.  The quantum circuit for preparing the quantum states $\left|\varphi \right\rangle$ and $\left|\phi\right\rangle$

    图 3  量子态内积对应的量子线路简略图

    Fig. 3.  The quantum circuit schematic diagram of the IPQS.

    图 4  量子态内积对应的量子线路图

    Fig. 4.  The quantum circuit diagram of the IPQS.

    图 5  5组数据用标准基态$\left|0\right\rangle$$\left|1\right\rangle$分别测量0和1的概率

    Fig. 5.  The probability of 0 and 1 separately measured by standard ground state $\left|0\right\rangle$ and $\left|1\right\rangle$ for five groups of data.

    图 6  训练样本数据集

    Fig. 6.  The training sample data set.

    图 7  量子方案与经典方法训练效果对比

    Fig. 7.  Comparison of the training results between the IPQS-based quantum circuit solution scheme and the SMO-based method.

    表 1  量子方案与经典方法求解内积结果对比

    Table 1.  Comparison of the inner product results between the quantum scheme and the classical method.

    SNData groupResult of 0Result of 1Classical calculationError rate/%
    Inner product value
    1(2.942485, 4.977398, 3.176513)(7.551510, 1.580030, 0.067732)29.67927929.67927930.2997952.05
    2(0.341367, 3.894998, 3.929515)(7.139979, 2.329896, 1.981083)19.25581519.25581519.2969890.21
    3(6.080573, 0.418886, 1.33507)(9.205805, 0.586480, 0.958476)57.28426557.28426557.5018700.38
    4(0.870296, 3.609952, 3.851484)(3.536555, 3.964960, 4.16744)33.50189833.50189833.4419930.18
    5(0.926310, 4.564359, 5.114204)(8.102154, 0.603875, 0.617218)13.80555213.80555213.4179872.89
    下载: 导出CSV

    表 2  基于量子态内积的量子线路训练方案的伪代码

    Table 2.  The pseudo code of the IPQS-based quantum circuit solution scheme.

    算法1. 基于量子态内积的量子线路训练方案
    输入: 训练样本集数据.
    输出: 支持向量机相关参数.
    初始化训练样本数据M和数据特征数量N, 初始化目标函数和约束条件, 初始化量子线路运行环境$ {Q}_{r} $和量子比特数量$n\leftarrow \lceil{ {\rm{log} } }_{2}N\rceil$.1: 使用SMO算法求解拉格朗日乘子向量
    $ \left({\alpha }_{1}, {\alpha }_{2}, \cdots , $$ {\alpha }_{M}\right) $;// 2.1节2: while 不满足停止条件时 do3:   for $ i, j=1:M $ do4:   通过启发式策略选择一对 $ {\alpha }_{i} $ and $ {\alpha }_{j} $;// 2.1节5:   初始化量子态;6:   生成量子态制备对应的量子线路;// (23)式7:   生成量子态内积对应的量子线路;// (25)式8:   通过量子线路计算对应训练样本之间的内积;//
       (19), (26) and (27) 式9:   计算 $ {\alpha }_{i}^{{\rm{n}}{\rm{e}}{\rm{w}}} $;// (10)式10:   计算 $ {\alpha }_{j}^{{\rm{n}}{\rm{e}}{\rm{w}}} $;// (11)式11:   计算 $ {b}_{i}^{{\rm{n}}{\rm{e}}{\rm{w}}} $;// (12)式12:   计算 $ {b}_{j}^{{\rm{n}}{\rm{e}}{\rm{w}}} $;// (13)式13:   更新$ {\alpha }_{i}, {\alpha }_{j}, b $的值;14:   end for15: end while16: 输出$ \alpha $与b
    下载: 导出CSV
  • [1]

    Cortes C, Vapnik V 1995 Mach. Learn. 20 273

    [2]

    Sebastian S, Matthias S, Christian S 2021 ACM J. Exp. Algor. 26 1

    [3]

    Vapnik V N 2000 The Nature of Statistical Learning Theory (New York: Springer-Verlag Press) pp25–314

    [4]

    Jiang F, Lu Y, Chen Y, Cai D, Li G F 2020 Comput. Electron. Agr. 179 105824Google Scholar

    [5]

    Zhang Q, Liu J M, Tian Y 2022 Optik 260 168807Google Scholar

    [6]

    Okwuashi O, Ndehedehe C E, Olayinka D N, Eyoh A, Attai H 2021 Int. J. Remote Sens. 42 6502

    [7]

    Kalaiarasi G, Maheswari S 2021 Neural Comput. Appl. 33 13391Google Scholar

    [8]

    Liu L M, Li P, Chu M X, Cai H B 2021 Int. J. Mach. Learn. Cyb. 12 2237Google Scholar

    [9]

    Reshma R, Pooja S, Suresh C 2018 Knowl. Based Syst. 139 64Google Scholar

    [10]

    Riyazuddin Y M, Basha S M, Reddy K K 2020 Int. J. Eng. Adv. Tech. 9 1336

    [11]

    Ma W Z, Cao Y, Bao W Z, Yang B, Chen Y H 2020 Sci. Programming-Neth 20 1

    [12]

    Cheng Y W, Fu L Y, Luo P, Ye Q L, Liu F, Zhu W 2020 Knowl. -Based Syst. 210 106488Google Scholar

    [13]

    Deen A J, Gyanchandani M 2020 Int. J. Adv. Comput. Sci. Appl. 11 187

    [14]

    Kumaresan T, Palanisamy C 2017 Int. J. Bio-Inspire. Com. 9 142Google Scholar

    [15]

    Chen Y 2020 Comput. Commun. 154 278Google Scholar

    [16]

    Lu Y L, Li J T, Yang Z H, Ou X F, Xie W W 2021 J. Comput. Methods Sci. 21 435

    [17]

    Tukan M, Baykal C, Feldman D, Rus D 2021 Theor. Comput. Sci. 890 171Google Scholar

    [18]

    Zhao J 2021 J. Phys. Conf. Ser. 1748 052006Google Scholar

    [19]

    Mangasarian O L, Wild E W 2006 IEEE T. Pattern Anal. 28 69Google Scholar

    [20]

    Zhang L, Suganthan P N 2015 IEEE T. Cybernetics 45 2165Google Scholar

    [21]

    Xu J, Tang Y Y, Zou B, Xu Z B, Li L Q, Lu Y, Zhang B C 2015 IEEE T. Cybernetics 45 1169Google Scholar

    [22]

    Zou B, Xu C, Lu Y, Tang Y Y, Xu J, You X G 2018 IEEE T. Neur. Net. Lear. 29 1328Google Scholar

    [23]

    Wu X H, Shi Z F, Xing H H, Xue Y S 2022 MATEC Web Conf. 355 03059Google Scholar

    [24]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [25]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang Y X, Zhang W J, Li H, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [26]

    Zhua Q L, Cao S R, Chen F S, et al. 2022 Sci. Bull. 67 240Google Scholar

    [27]

    Deshpande A, Mehta A, Vincent T, Quesada N, Hinsche M, Ioannou M, Madsen L, Lavoie J, Qi H Y, Eisert J, Hangleiter D, Fefferman B, Dhand I 2022 Sci. Adv. 8 eabi7894Google Scholar

    [28]

    Yuan X 2020 Science 369 1054Google Scholar

    [29]

    Zhang Y J, Mu X D, Liu X W, Wang X Y, Zhang X, Li K, Wu T Y, Zhao D, Dong C 2022 Appl. Soft Comput. 118 108554Google Scholar

    [30]

    Fan J N, Wu S X, Yu C S 2021 Quantum Inf. Process. 20 9Google Scholar

    [31]

    Huang S, Yin H L, Chen Z B, Wu S J 2022 arXiv: 2203.12884 v1

    [32]

    Booth K E C, O'Gorman B, Marshall J, Hadfield S, Rieffel E 2021 Quantum 5 550Google Scholar

    [33]

    Rujuta V, Nagraj D, Rajesh K, Akash S 2021 Knowl. Based Syst. 219 106859Google Scholar

    [34]

    Chen J W, Qi X M, Chen L F, Chen F L, Cheng G H 2020 Knowl. Based Syst. 203 106167Google Scholar

    [35]

    Lloyd S, Mohseni M, Rebentrost P 2013 arXiv: 1307.0411 v1

    [36]

    Rebentrost P, Mohseni M, Lloyd S 2014 Phys. Rev. Lett. 113 130503Google Scholar

    [37]

    Boser B E, Guyou I M, Vapnik V N 1992 Proceedings of the 5th Annual Workshop on Computational Learning Theory Pittsburgh Pennsylvania, USA, July 1–2, 1992 p144

    [38]

    Osuna E, Frenud R, Girosi F 1997 Proceedings of the 1997 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing VII Amelia Island, FL, USA, September 24–26, 1997 p276

    [39]

    Platt J C 1998 Advances in Kernel Methods-Support Vecotor Learning (Cambridge MA: MIT Press) pp41–65

    [40]

    Ralaivola L, Alché-Buc F D' 2001 Proceedings of International Conference on Artificial Neural Networks Vienna, Austria, August 21–25, 2001 p322

  • [1] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制. 物理学报, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制. 物理学报, 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [3] 李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏. 浅光晶格中量子隧穿现象的实验观测. 物理学报, 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [4] 王伟, 王一平. 一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制. 物理学报, 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [5] 姚杰, 赵爱迪. 表面单分子量子态的探测和调控研究进展. 物理学报, 2022, 71(6): 060701. doi: 10.7498/aps.71.20212324
    [6] 张毅军, 慕晓冬, 刘潇文, 王星宇, 东晨, 吴田宜, 李凯. 量子近似优化算法在指挥控制组织任务规划中的应用. 物理学报, 2021, 70(23): 230304. doi: 10.7498/aps.70.20211028
    [7] 卫容宇, 聂敏, 杨光, 张美玲, 孙爱晶, 裴昌幸. 基于软件定义量子通信的自由空间量子通信信道参数自适应调整策略. 物理学报, 2019, 68(14): 140302. doi: 10.7498/aps.68.20190462
    [8] 赵永平, 张丽艳, 李德才, 王立峰, 蒋洪章. 过滤窗最小二乘支持向量机的混沌时间序列预测. 物理学报, 2013, 62(12): 120511. doi: 10.7498/aps.62.120511
    [9] 行鸿彦, 祁峥东, 徐伟. 基于选择性支持向量机集成的海杂波背景中的微弱信号检测. 物理学报, 2012, 61(24): 240504. doi: 10.7498/aps.61.240504
    [10] 王芳芳, 张业荣. 基于支持向量机的电磁逆散射方法. 物理学报, 2012, 61(8): 084101. doi: 10.7498/aps.61.084101
    [11] 刘凯, 李文东, 张闻钊, 史鹏, 任春年, 顾永建. 高维辅助的普适量子线路优化. 物理学报, 2012, 61(12): 120301. doi: 10.7498/aps.61.120301
    [12] 阎晓妹, 刘丁. 基于最小二乘支持向量机的分数阶混沌系统控制. 物理学报, 2010, 59(5): 3043-3048. doi: 10.7498/aps.59.3043
    [13] 蔡俊伟, 胡寿松, 陶洪峰. 基于选择性支持向量机集成的混沌时间序列预测. 物理学报, 2007, 56(12): 6820-6827. doi: 10.7498/aps.56.6820
    [14] 张家树, 党建亮, 李恒超. 时空混沌序列的局域支持向量机预测. 物理学报, 2007, 56(1): 67-77. doi: 10.7498/aps.56.67
    [15] 叶美盈, 汪晓东, 张浩然. 基于在线最小二乘支持向量机回归的混沌时间序列预测. 物理学报, 2005, 54(6): 2568-2573. doi: 10.7498/aps.54.2568
    [16] 崔万照, 朱长纯, 保文星, 刘君华. 基于模糊模型支持向量机的混沌时间序列预测. 物理学报, 2005, 54(7): 3009-3018. doi: 10.7498/aps.54.3009
    [17] 刘 涵, 刘 丁, 任海鹏. 基于最小二乘支持向量机的混沌控制. 物理学报, 2005, 54(9): 4019-4025. doi: 10.7498/aps.54.4019
    [18] 崔万照, 朱长纯, 保文星, 刘君华. 混沌时间序列的支持向量机预测. 物理学报, 2004, 53(10): 3303-3310. doi: 10.7498/aps.53.3303
    [19] 嵇英华. 脉冲信号对介观RLC电路量子态的影响. 物理学报, 2003, 52(3): 692-695. doi: 10.7498/aps.52.692
    [20] 嵇英华, 雷敏生, 谢芳森, 熊小华. 脉冲信号作用下介观LC电路的量子效应. 物理学报, 2001, 50(6): 1163-1166. doi: 10.7498/aps.50.1163
计量
  • 文章访问数:  4098
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 修回日期:  2023-01-19
  • 上网日期:  2023-02-09
  • 刊出日期:  2023-04-05

/

返回文章
返回