搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅光晶格中量子隧穿现象的实验观测

李婷 汪涛 王叶兵 卢本全 卢晓同 尹默娟 常宏

引用本文:
Citation:

浅光晶格中量子隧穿现象的实验观测

李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏

Experimental observation of quantum tunneling in shallow optical lattice

Li Ting, Wang Tao, Wang Ye-Bing, Lu Ben-Quan, Lu Xiao-Tong, Yin Mo-Juan, Chang Hong
PDF
HTML
导出引用
  • 基于一维水平光晶格的锶原子光晶格钟实验平台, 当系统的稳定度和不确定度达到10–18量级以上时, 由量子隧穿效应引起的钟频移变得不容忽视. 在浅光晶格中, 量子隧穿效应会使钟跃迁谱线发生明显的展宽现象, 因此, 本文通过研究浅光晶格中的量子隧穿现象, 为87Sr原子光晶格钟系统不确定度的评估奠定基础. 本实验在一维87Sr原子光晶格钟平台上, 利用超稳超窄线宽的698 nm激光激发87Sr冷原子1S0($ \left|g \right\rangle $)→3P0($ \left|e \right\rangle $)跃迁(即钟跃迁), 实现了对锶原子分布在特定量子态的制备. 在深光晶格中, 将原子制备到$ \left|e,{n}_{z}=1 \right\rangle $态后, 再绝热地降低光晶格阱深, 然后在浅光晶格中, 探测激发态的载波-边带可分辨的钟跃迁谱线. 从钟跃迁谱线中观测到载波谱线发生了明显的劈裂, 表明原子在光晶格相邻格点间产生了明显的量子隧穿现象. 通过对光晶格中量子隧穿机制的理解, 不仅有利于提高光晶格钟的不确定度, 也可为观测光晶格中费米子的自旋轨道耦合效应提供基础数据.
    For a one-dimensional optical lattice clock built in the horizontal direction, when the stability and uncertainty of the system reach the order of 10–18 or more, the clock frequency shift caused by the quantum tunneling effect becomes not negligible. In the shallow optical lattice, the quantum tunneling effect will cause the clock transition spectrum to be significantly broadened. So, in this paper the quantum tunneling phenomenon in the shallow optical lattice is studied, laying a foundation for the evaluation of uncertainty of 87Sr atomic optical lattice clock system. In this experiment, on the platform of one-dimensional 87Sr atomic optical lattice clock, the narrow-linewidth 1S0($ \left|g \right\rangle $)→3P0($ \left|e \right\rangle $) transition (that is, the clock transition) is excited by an ultra-stable and ultra-narrow linewidth 698 nm laser, and the distribution of strontium atoms in a specific quantum state is prepared. In the deep optical lattice, after the cold 87Sr atoms in preparation reach a $ \left|e,{n}_{z}=1 \right\rangle $ state, the lattice depth of the optical lattice is adiabatically reduced. Then, the carrier-sideband resolved clock transition spectral line is detected in the shallow optical lattice. The obvious splitting of the carrier spectral line is observed from the clock transition spectral line, which indicates that the strontium atom has an obvious quantum tunneling phenomenon between the adjacent lattice sites of the optical lattice. In addition, when the lattice potential lattice depth is reduced, owing to the incommensurability of lattice light wavelength (813 nm) and clock laser wavelength (698 nm), the tunneling of atoms between adjacent lattice points will lead to spin-orbit coupling effect. Owing to the exceptionally long lifetime (120(3) s) of 3P0 state, it can not only suppress the decoherence, but also reduce the atomic loss rate caused by spontaneous emission. This has a natural advantage for studying the spin-orbit coupling of fermions. Therefore, the understanding of quantum tunneling mechanism in optical lattice is not only conducive to improving the uncertainty of the 87Sr atomic optical lattice clock, but also lays the foundation for observing the spin-orbit coupling effect of fermions on this platform.
      通信作者: 汪涛, tauwaang@cqu.edu.cn ; 常宏, changhong@ntsc.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11803042, 61775220)、中国科学院青年创新促进会(批准号: 2019400)、国家理论物理研究专项基金(批准号: 11647165)和中国博士后科学基金面上项目(批准号: 2020M673118) 资助的课题.
      Corresponding author: Wang Tao, tauwaang@cqu.edu.cn ; Chang Hong, changhong@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11803042, 61775220), the Youth Innovation Promotion Association the Chinese Academy of Sciences (Grant No. 2019400), the Special Foundation for Theoretical Physics Research Program of China (Grant No. 11647165), the China Postdoctoral Science Foundation Funded Project (Grant No. 2020M673118).
    [1]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71Google Scholar

    [2]

    Oelker E, R. Huston B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Legero T, Giunta M, Holzwarth R, Riehle R, Sterr U, Ye J 2019 Nat. Photon. 13 714Google Scholar

    [3]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001Google Scholar

    [4]

    Brewer S M, Chen J S, Hankin A M 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [5]

    McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87Google Scholar

    [6]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215Google Scholar

    [7]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185Google Scholar

    [8]

    Campbell S L, Hutson R B, Marti G E, Goban A, Oppong N D, Mcally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90Google Scholar

    [9]

    Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [10]

    Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S, Peik E 2014 Phys. Rev. Lett. 113 210802Google Scholar

    [11]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630Google Scholar

    [12]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [13]

    Sanner C, Huntemann N, Lange R, Tamm C, Peik E, Safronova M S, Porsev S G 2019 Nature 567 204Google Scholar

    [14]

    Roberts B M, Blewitt G, Dailey C, Murphy M, Pospelov M, Rollings A, Sherman J, Williams W, Derevianko A 2017 Nat. Commun. 8 1195Google Scholar

    [15]

    H Lignier, C Sias, D Ciampini, Y Singh, A Zenesini, O Morsch 2007 Phys. Rev. Lett. 99 220403Google Scholar

    [16]

    Grossmann F, Dittrich T, Jung P, Hänggi P 1991 Phys. Rev. Lett. 67 516Google Scholar

    [17]

    Lemonde P, Wolf P 2005 Phys. Rev. A 72 033409Google Scholar

    [18]

    Beloy K, Bodine M I, Bothwell T, Brewer S M, Zhang X 2021 Nature 591 564Google Scholar

    [19]

    Kolkowitz S, Bromley S L, Bothwell T, Wall M L, Ye J 2017 Nature 542 66Google Scholar

    [20]

    Bromley S L, Kolkowitz S, Bothwell T, Kedar D, Safavi-Naini A, Wall M L, Salomon C, Rey A M, Ye J 2018 Nat. Phys. 14 399Google Scholar

    [21]

    Van Hove L 1953 Phys. Rev. 89 1189Google Scholar

    [22]

    Kim P, Odom T W, Huang J L, Lieber C M 1999 Phys. Rev. Lett. 82 1225Google Scholar

    [23]

    Zwerger W 2003 J. Opt. B.:Quantum Semiclass. Opt. 5 S9Google Scholar

    [24]

    Wall M L, Koller A P, Li S, Zhang X, Cooper N R, Ye J 2016 Phys. Rev. Lett. 116 035301Google Scholar

    [25]

    卢晓同, 李婷, 孔德欢, 王叶兵, 常宏 2019 物理学报 68 233401Google Scholar

    Lu X T, Li T, Kong D H, Wang Y B, Chang H 2019 Acta Phys. Sin. 68 233401Google Scholar

    [26]

    Lu X T, Yin M J, Li T, Wang Y B, Chang H 2020 Appl. Sci. 10 1440Google Scholar

    [27]

    Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y, Chang H 2018 Chin. Phys. B 27 023701Google Scholar

    [28]

    Blatt S, Thomsen J W, CaMpbell G K, Ludlow A D, Swallows M D, Martin M J 2009 Phys. Rev. A 80 3590

    [29]

    Yin M J, Wang T, Lu X T, Li T, Xia J J, Zhang X F, Chang H 2022 Phys. Rev. Lett. 128 073603

  • 图 1  隧穿速率J$ {U}_{z}/{E}_{r} $的变化关系

    Fig. 1.  Variation of tunneling rate J with $ {U}_{z}/{E}_{r} $.

    图 2  实验装置简图. 其中HR为高反镜, CL为凸透镜, GP为格兰-泰勒棱镜, PBS为偏振分光棱镜, PMF为保偏光纤, FNC为相位噪声抑制系统, AOM为声光调制器, PMT为光电倍增管, ULE为超稳光学参考腔, DAQ为数据采集卡, VVA为压控衰减器, AFG为信号源, MS为微波开关

    Fig. 2.  Experimental setup. HR, high-reflection mirror; CL, convex lens; GP, Gran Taylor prism; PBS, polarization splitting prism; PMF, polarization maintaining fiber; FNC, phase noise cancellation system; AOM, acoustic-optic modulator; PMT, photomultiplier tube; ULE, ultra-stable optical reference cavity; DAQ, data acquisition card; VVA, voltage variable attenuator; AFG, signal source; MS, microwave switch.

    图 3  载波-边带可分辨的钟跃迁谱线

    Fig. 3.  Carrier-sideband resolved clock transition spectra.

    图 4  (a)锶原子能级图; (b)态制备及激发态钟跃迁谱线探测时序图

    Fig. 4.  (a) Simplified level scheme of strontium; (b) state preparation and excited state transition spectrum detection clock sequence diagram.

    图 5  载波-边带可分辨钟跃迁谱线 (a)原子初态在$ \left|e, {n}_{z}=0 \right\rangle $态; (b) 原子初态在$ \left|e, {n}_{z}=1 \right\rangle $

    Fig. 5.  Carrier-sideband resolved clock transition spectra with: (a)Atoms in $ \left|e, {n}_{z}=0 \right\rangle $; (b) atoms in $ \left|e, {n}_{z}=1 \right\rangle $.

    图 6  在浅晶格中, 原子初态在$ \left|e, {n}_{z}=1 \right\rangle $态的 (a)载波-边带可分辨钟跃迁谱线; (b)钟跃迁载波谱线.

    Fig. 6.  In shallow lattice, the atoms in $ \left|e, {n}_{z}=1 \right\rangle $ state: (a) carrier-sideband resolved clock transition spectra; (b) carrier clock transition spectrum.

  • [1]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71Google Scholar

    [2]

    Oelker E, R. Huston B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Legero T, Giunta M, Holzwarth R, Riehle R, Sterr U, Ye J 2019 Nat. Photon. 13 714Google Scholar

    [3]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001Google Scholar

    [4]

    Brewer S M, Chen J S, Hankin A M 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [5]

    McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87Google Scholar

    [6]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215Google Scholar

    [7]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185Google Scholar

    [8]

    Campbell S L, Hutson R B, Marti G E, Goban A, Oppong N D, Mcally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90Google Scholar

    [9]

    Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [10]

    Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S, Peik E 2014 Phys. Rev. Lett. 113 210802Google Scholar

    [11]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630Google Scholar

    [12]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [13]

    Sanner C, Huntemann N, Lange R, Tamm C, Peik E, Safronova M S, Porsev S G 2019 Nature 567 204Google Scholar

    [14]

    Roberts B M, Blewitt G, Dailey C, Murphy M, Pospelov M, Rollings A, Sherman J, Williams W, Derevianko A 2017 Nat. Commun. 8 1195Google Scholar

    [15]

    H Lignier, C Sias, D Ciampini, Y Singh, A Zenesini, O Morsch 2007 Phys. Rev. Lett. 99 220403Google Scholar

    [16]

    Grossmann F, Dittrich T, Jung P, Hänggi P 1991 Phys. Rev. Lett. 67 516Google Scholar

    [17]

    Lemonde P, Wolf P 2005 Phys. Rev. A 72 033409Google Scholar

    [18]

    Beloy K, Bodine M I, Bothwell T, Brewer S M, Zhang X 2021 Nature 591 564Google Scholar

    [19]

    Kolkowitz S, Bromley S L, Bothwell T, Wall M L, Ye J 2017 Nature 542 66Google Scholar

    [20]

    Bromley S L, Kolkowitz S, Bothwell T, Kedar D, Safavi-Naini A, Wall M L, Salomon C, Rey A M, Ye J 2018 Nat. Phys. 14 399Google Scholar

    [21]

    Van Hove L 1953 Phys. Rev. 89 1189Google Scholar

    [22]

    Kim P, Odom T W, Huang J L, Lieber C M 1999 Phys. Rev. Lett. 82 1225Google Scholar

    [23]

    Zwerger W 2003 J. Opt. B.:Quantum Semiclass. Opt. 5 S9Google Scholar

    [24]

    Wall M L, Koller A P, Li S, Zhang X, Cooper N R, Ye J 2016 Phys. Rev. Lett. 116 035301Google Scholar

    [25]

    卢晓同, 李婷, 孔德欢, 王叶兵, 常宏 2019 物理学报 68 233401Google Scholar

    Lu X T, Li T, Kong D H, Wang Y B, Chang H 2019 Acta Phys. Sin. 68 233401Google Scholar

    [26]

    Lu X T, Yin M J, Li T, Wang Y B, Chang H 2020 Appl. Sci. 10 1440Google Scholar

    [27]

    Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y, Chang H 2018 Chin. Phys. B 27 023701Google Scholar

    [28]

    Blatt S, Thomsen J W, CaMpbell G K, Ludlow A D, Swallows M D, Martin M J 2009 Phys. Rev. A 80 3590

    [29]

    Yin M J, Wang T, Lu X T, Li T, Xia J J, Zhang X F, Chang H 2022 Phys. Rev. Lett. 128 073603

  • [1] 高吉明, 狄国文, 鱼自发, 唐荣安, 徐红萍, 薛具奎. 人工磁场下各向异性偶极玻色气体的量子相变. 物理学报, 2024, 73(13): 130503. doi: 10.7498/aps.73.20240376
    [2] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制. 物理学报, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [3] 张毅军, 慕晓冬, 郭乐勐, 张朋, 赵导, 白文华. 一种基于量子线路的支持向量机训练方案. 物理学报, 2023, 72(7): 070302. doi: 10.7498/aps.72.20222003
    [4] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制. 物理学报, 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [5] 罗雨晨, 李晓鹏. 相互作用费米子的量子模拟. 物理学报, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [6] 姚杰, 赵爱迪. 表面单分子量子态的探测和调控研究进展. 物理学报, 2022, 71(6): 060701. doi: 10.7498/aps.71.20212324
    [7] 刘浪, 王一平. 基于可调频光力晶格中声子-光子拓扑性质的模拟和探测. 物理学报, 2022, 71(22): 224202. doi: 10.7498/aps.71.20221286
    [8] 王伟, 王一平. 一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制. 物理学报, 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [9] 李婷, 卢晓同, 周驰华, 尹默娟, 王叶兵, 常宏. 利用钟跃迁谱线测量超稳光学参考腔的零温漂点. 物理学报, 2021, 70(7): 073701. doi: 10.7498/aps.70.20201721
    [10] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性. 物理学报, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [11] 文凯, 王良伟, 周方, 陈良超, 王鹏军, 孟增明, 张靖. 超冷87Rb原子在二维光晶格中Mott绝缘态的实验实现. 物理学报, 2020, 69(19): 193201. doi: 10.7498/aps.69.20200513
    [12] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发. 物理学报, 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [13] 卫容宇, 聂敏, 杨光, 张美玲, 孙爱晶, 裴昌幸. 基于软件定义量子通信的自由空间量子通信信道参数自适应调整策略. 物理学报, 2019, 68(14): 140302. doi: 10.7498/aps.68.20190462
    [14] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量. 物理学报, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [15] 李晓云, 孙博文, 许正倩, 陈静, 尹亚玲, 印建平. 基于调制光晶格的中性分子束光学Stark减速与囚禁的理论研究. 物理学报, 2018, 67(20): 203702. doi: 10.7498/aps.67.20181348
    [16] 林弋戈, 方占军. 锶原子光晶格钟. 物理学报, 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [17] 田晓, 王叶兵, 卢本全, 刘辉, 徐琴芳, 任洁, 尹默娟, 孔德欢, 常宏, 张首刚. 锶玻色子的“魔术”波长光晶格装载实验研究. 物理学报, 2015, 64(13): 130601. doi: 10.7498/aps.64.130601
    [18] 周骏, 任海东, 冯亚萍. 强非局域光晶格中空间孤子的脉动传播. 物理学报, 2010, 59(6): 3992-4000. doi: 10.7498/aps.59.3992
    [19] 张科智, 王建军, 刘国荣, 薛具奎. 两组分BECs在光晶格中的隧穿动力学及其周期调制效应. 物理学报, 2010, 59(5): 2952-2961. doi: 10.7498/aps.59.2952
    [20] 嵇英华. 脉冲信号对介观RLC电路量子态的影响. 物理学报, 2003, 52(3): 692-695. doi: 10.7498/aps.52.692
计量
  • 文章访问数:  5418
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-03
  • 修回日期:  2021-12-06
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回