搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可调频光力晶格中声子-光子拓扑性质的模拟和探测

刘浪 王一平

引用本文:
Citation:

基于可调频光力晶格中声子-光子拓扑性质的模拟和探测

刘浪, 王一平

Simulation and detection of the topological properties of phonon-photon in frequency-tunable optomechanical lattice

Liu Lang, Wang Yi-Ping
PDF
HTML
导出引用
  • 提出一种基于耦合光力系统的一维晶格理论方案,其中由多个腔场模和机械模式组成,通过调控系统的参数,使其获得集体动力学演化规律,来研究其中的拓扑相变和拓扑量子通道. 首先,通过分析该晶格系统的能谱和边缘态,研究其拓扑特性和拓扑量子通道. 其次,基于拓扑绝缘体的散射理论和输入输出关系,研究平均光子数和反射系数相的环绕数,探测系统的拓扑边缘态和拓扑不变量. 另外,考虑无序缺陷对拓扑特性的影响,发现系统受拓扑的保护,使边缘态对其具有鲁棒性;但无序和微扰大于能隙时,边态模和不变量会发生改变. 该理论研究结果可以应用于量子通信和量子信息处理中.
    We propose a one-dimensional lattice theory scheme based on a coupled optomechanical system consisting of multiple cavity field modes and mechanical modes, where their frequencies can be tuned. In this system, by manipulating parameters to obtain collective dynamical evolution of the system, we study topological properties and topological quantum channels in the system. Firstly, the topological insulator properties and topological quantum channels of the system are studied by modulating the periodic coupling parameters of the system and analyzing the characteristics of the energy spectrum and edge states of the system. It is found that edge state distributions can exhibit flipping processes, which can be applied to quantum information processing. Secondly, based on the scattering theory of topological insulators and the relationship between input and output, the variation characteristics of the steady-state average photon number of the cavity field and the winding number of the reflection coefficient phase are analyzed. It is found that the dissipation of the cavity field has a certain influence on the locality of the distribution of the average photon number in the lattice, and it also indirectly explains the locality of the edge states of the system, and the topological invariants are detected by the winding number. In addition, considering the effect of disordered defects on topological properties, we further analyze their effects on the energy spectrum of the system, the winding number of the reflection coefficient phase and the average photon number of the cavity field. It is found that two defects in the system cause different physical effects, and when their values are small, the edge states of the system are robust to it, which also shows that the system has the characteristics of topological protection. However, when disorder and perturbation are larger than the energy gap, the topological properties of the system will be annihilated, so that the edge states will be indistinguishable, and the topological invariants will change at the same time. The research results of this system can be generalized to other types of models and can be applied to quantum communication and quantum information processing, which will have certain constructive suggestions for the development of future quantum technology.
      通信作者: 王一平, ypwang2019@nwafu.edu.cn
    • 基金项目: 陕西省自然科学基金(批准号: 2021JQ-129)、西北农林科技大学本科生创新计划(批准号: X202210712002)和中央高校基本科研业务费(批准号: 2452020019, 2452022027)资助的课题
      Corresponding author: Wang Yi-Ping, ypwang2019@nwafu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2021JQ-129), Undergraduate Innovation Program of Northwest A&F University, China (Grant No. X202210712002), and the Fundamental Research Fund for the Central Universities, China (Grant Nos. 2452020019, 2452022027)
    [1]

    Braginskii V B and Manukin A B 1967 Sov. Phys. JETP 25 653

    [2]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [3]

    Liu Y L, Wang C, Zhang J, Liu Y X 2018 Chin. Phys. B 27 024204Google Scholar

    [4]

    Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar

    [5]

    You J Q, Nori F 2011 Nature 474 589Google Scholar

    [6]

    Martin I, Shnirman A, Lin T, Zoller P 2004 Phys. Rev. B 69 125339Google Scholar

    [7]

    Xiao Y, Yu Y F, Zhang Z M 2014 Opt. Express 22 17979Google Scholar

    [8]

    Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2019 Laser Phys. Lett. 16 015205Google Scholar

    [9]

    Wei W Y, Yu Y F, Zhang Z M 2018 Chin. Phys. B 27 034204Google Scholar

    [10]

    Huang S M, Agarwal G S 2010 Phys. Rev. A 81 033830Google Scholar

    [11]

    Zhang Z C, Wang Y P, Yu Y F, Zhang Z M 2019 Ann.Phys. 531 1800461Google Scholar

    [12]

    Wang K, Yu Y F, Zhang Z M 2019 Phys. Rev. A 100 053832Google Scholar

    [13]

    Li J, Yu R, Ding C, Wu Y 2014 Opt. Express 22 15024Google Scholar

    [14]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar

    [15]

    Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2018 J. Phys. B: At. Mol. Opt. Phys. 51 175504Google Scholar

    [16]

    Massel F, Heikkil T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpää M A 2011 Nature 480 351Google Scholar

    [17]

    Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2019 Chin. Phys. B 28 014202Google Scholar

    [18]

    Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204Google Scholar

    [19]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [20]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [21]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [22]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [23]

    Xu Z, Zhang Y, Chen S 2017 Phys. Rev. A 96 013606Google Scholar

    [24]

    Li L, Xu Z, Chen S 2014 Phys. Rev. B 89 085111Google Scholar

    [25]

    Li L, Chen S 2015 Phys. Rev. B 92 085118Google Scholar

    [26]

    Mei F, Zhu S L, Zhang Z M, Oh C H, Goldman N 2012 Phys. Rev. A 85 013638Google Scholar

    [27]

    Xu Z, Zhang R, Chen S, Fu L, Zhang Y 2020 Phys. Rev. A 101 013635Google Scholar

    [28]

    Wray L A, Xu V, Xia Y, Hsieh D, Fedorov A V, SanHor Y, Cava R J, Bansil A, Lin H, Hasan M Z 2011 Nat. Phys. 7 32Google Scholar

    [29]

    Malki M, Uhrig G S 2017 Phys. Rev. B 95 235118Google Scholar

    [30]

    Berg E, Dalla Torre E G, Giamarchi T, Altman E 2008 Phys. Rev. B 77 245119Google Scholar

    [31]

    Chitov G Y 2018 Phys. Rev. B 97 085131Google Scholar

    [32]

    Agrapidis C E, van den Brink J, Nishimoto S 2019 Phys. Rev. B 99 224418Google Scholar

    [33]

    Feng X Y, Zhang G M, Xiang T 2007 Phys. Rev. Lett 98 087204Google Scholar

    [34]

    Roque T F, Peano V, Yevtushenko O M, Marquardt F 2017 New J. Phys 19 013006Google Scholar

    [35]

    Wan L L, Lü X Y, Gao J H, Wu Y 2017 Opt. Express 25 017364Google Scholar

    [36]

    Qi L, Yan Y, Wang G L, Zhang S, Wang H F 2019 Phys. Rev. B 100 062323Google Scholar

    [37]

    Xu X W, Zhao Y J, Wang H, Chen A X, Liu Y X 2022 Front. Phys. 10 3389

    [38]

    Mei F, Xue Z Y, Zhang D W, Tian L, Lee C, Zhu S L 2016 Quantum Sci. Technol. 1 015006Google Scholar

    [39]

    Walls D F, Milburn G J 2008 Quantum Optics (Berlin: Springer) pp127–138

    [40]

    Clerk A A, Devoret M H, Girvin S M, Marquardt F, Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155Google Scholar

  • 图 1  一维(1D)腔光力耦合晶格系统模型图, $ a_n $$ b_n $分别表示腔场和机械振子的模式, 其中包含$ N+1 $个腔模式和$ N $个机械模式

    Fig. 1.  Schematic of the 1D optomechanical coupling lattice system, $ a_n $ and $ b_n $represent the modes of the cavity field and the mechanical oscillator, respectively, and including $ N+1 $ cavity modes and $ N $mechanical modes.

    图 2  系统能谱E与参数$ \phi $的物理图像 (a) $ M_{1} = M_{2} = 0 $; (b) $ M_{1} = 0, M_{2} = 0.1 $. 参数$ \phi $取值范围为(0, $2\text{π}$), $N = 15$

    Fig. 2.  The energy spectrum E of the system vs the parameter $ \phi $: (a) $ M_{1} = M_{2} = 0 $; (b) $ M_{1} = 0, M_{2} = 0.1 $. The range of parameter $ \phi $ is (0, $2\text{π}$), $ N = 15 $

    图 3  系统能谱E与参数$ \phi $的物理图像 (a) $ \psi = 0 $; (b) $ \psi = 0.1\pi $; (c) $ \psi = 0.9\pi $; (d) $ \psi = \pi $. 参数 $ \phi $ 取值范围为($0, 2\pi $), $N = 15$

    Fig. 3.  The energy spectrum E of the system vs the parameter $ \phi $: (a) $ \psi=0 $; (b) $ \psi=0.1\pi $; (c) $ \psi=0.9\pi $; (d) $ \psi=\pi $. The range of parameter $ \phi $ is (0, $ 2\pi $), $ N = 15 $

    图 4  边缘态分布与晶格数的物理图像 (a), (c) $ \phi = 2\pi/3 $, $ \psi = 3\pi/2, \pi/2, \pi $; (b), (d) $ \phi = \pi/3 $, $ \psi = 4\pi/3, 2\pi/3, \pi $

    Fig. 4.  The state distribution vs the lattice number: (a), (c) $ \phi = 2\pi/3 $, $ \psi = 3\pi/2, \pi/2, \pi $; (b), (d) $ \phi = \pi/3 $, $ \psi = 4\pi/3, 2\pi/3, \pi $

    图 5  沿晶格方向腔场稳态的平均光子数N与晶格数的物理图像 (a)晶格数为10, 驱动频率为$ \varDelta _{a, n} = 0.25 t $, $ \psi = 0.25\pi $; (b)晶格数为4, 驱动频率是$ \varDelta _{a, n} = - 0.01 t $, $ \psi = 0.25\pi $, 黑色虚线$ \kappa = 0.1 $, 红色点线$ \kappa = 0.15 $, 蓝色点虚线$ \kappa = 0.2 $; (c)$ \psi = $$ 0.2\pi, 0.23\pi, 0.26\pi $; (d)在腔的最左边(黑色线圆)、中间(红色虚线正方形)和最右边(蓝色点虚线菱形)驱动晶格.其他参数为$ \varOmega _{1 a} = 0.1 t $, $ \phi = 0.8\pi $

    Fig. 5.  The average photon number N vs the lattice number: (a) The lattice size 10, $ \varDelta _{a, n} = 0.25 t $, $ \psi = 0.25\pi $; (b) the lattice size 4, $ \varDelta _{a, n} = - 0.01 t $, $ \psi = 0.25\pi $, black dotted line $ \kappa = 0.1 $, the red dotted line $ \kappa = 0.15 $, the blue dotted line $ \kappa = 0.2 $; (c) $ \psi = 0.2\pi, 0.23\pi, 0.26\pi $; (d) lattice site driven at the far left (black circles), middle (red dashed squares) and rightmost (blue dotted diamonds). Other parameters are Ω1a = 0.1t and ϕ=0.8π

    图 6  反射系数相的环绕数随参数$ \phi $的变化 (a1), (a2), (a3)蓝色线条为$ \psi = \pi/2 $, 红色线条为$ \psi = - \pi/2 $; (b) $\psi = $$ \pi/2$, $ \kappa = 0.1, 0.5, 1.5, 2 $; (c) $ \psi = - \pi/2 $, $ \kappa=0.1, 0.5, 1.5, 2 $. 其他参数为$\varOmega _{1 a} = 0.75 t$, 晶格数为10

    Fig. 6.  The winding number of the reflection coefficient phase varies with parameter$ \phi $: (a1), (a2), (a3) The blue line is $ \psi = \pi/2 $, the red line is $ \psi = - \pi/2 $; (b) $ \psi = \pi/2 $, $ \kappa=0.1, 0.5, 1.5, 2 $; (c) $ \psi = - \pi/2 $, $ \kappa = 0.1, 0.5, 1.5, 2 $. Other parameters are $\varOmega _{1 a} = 0.75 t$ and lattice size 10.

    图 7  最近邻相互作用之间的无序与系统能谱的物理图像 (a) $ \upsilon = 0.1 $; (b) $ \upsilon = 0.5 $; (c) $ \upsilon = 1 $; (d) $ \upsilon = 1.5 $; (e) $ \upsilon = 2 $; (f) $ \upsilon = 3 $. 其他参数为$ \psi = \pi/2 $, 晶格数为10

    Fig. 7.  The effects of the disorder added into the nearest neighbor interaction on the energy spectra (a) $ \upsilon = 0.1 $; (b) $ \upsilon = 0.5 $; (c) $ \upsilon = 1 $; (d) $ \upsilon = 1.5 $; (e) $ \upsilon = 2 $; (f) $ \upsilon = 3 $. Other parameters are $ \psi = \pi/2 $ and lattice size 10.

    图 8  在位无序与系统能谱的物理图像 (a) $ \mu = 0.1 $; (b) $ \mu = 0.5 $; (c) $ \mu = 1 $; (d) $ \mu = 1.5 $; (e) $ \mu = 2 $; (f) $ \mu = 3 $. 其他参数为$ \psi = \pi/2 $, 晶格数为10

    Fig. 8.  The effects of the disorder added into the on-site potential energy on the energy spectra: (a) $ \mu = 0.1 $; (b) $ \mu = 0.5 $, (c) $ \mu = 1 $; (d) $ \mu = 1.5 $; (e) $ \mu = 2 $, (f) $ \mu = 3 $. Other parameters are $ \psi = \pi/2 $ and lattice size 10.

    图 9  左边缘态的分布与缺陷强度$ \mu $, $ \upsilon $和晶格数的物理图像, 其他参数为$ \psi=\pi/2 $, 晶格数为10

    Fig. 9.  The distribution of the left edge state is plotted with the defect intensity $ \mu $, $ \upsilon $, and lattice number, respectively, other parameters are $ \psi = \pi/2 $ and lattice size 10.

    图 10  反射系数相的环绕数与无序缺陷的物理图像 (a) $ \upsilon = 0, 0.3, 0.6 $; (b) $ \upsilon = 1, 1.2, 1.4 $; (c) $ \mu = 0, 0.04, 0.08 $; (d) $\mu = 0.1, $$ 0.2, 0.3$. 其他参数为$ \psi = \pi/2 $, $ \kappa = 0.1 $, 晶格数为10

    Fig. 10.  The winding number of the reflection coefficient phase varies with the disorder: (a) $ \upsilon = 0, 0.3, 0.6 $; (b) $ \upsilon = 1, 1.2, 1.4 $; (c) $ \mu = 0, 0.04, 0.08 $; (d) $ \mu = 0.1, 0.2, 0.3 $. Other parameters are $ \psi = \pi/2 $, $ \kappa = 0.1 $ and lattice size 10.

    图 11  沿晶格方向腔场稳态的平均光子数与缺陷强度$ \mu $, $ \upsilon $和晶格数的物理图像 (a) $ \upsilon = 0, 1, 2, 3 $; (b) $ \mu = 0, 1, 2, 3 $. 其他参数为$\varOmega _{1 a} = 0.1 t$, $ \phi = 0.8\pi $, $\varDelta _{a, n} = - 0.5 t$, $ \kappa = 0.1 $, 晶格数为10

    Fig. 11.  The average photon number $ N $ varies with the defect intensity $ \mu $, $ \upsilon $ and lattice number, respectively: (a) $ \upsilon = $$ 0, 1, 2, 3 $; (b) $ \mu = 0, 1, 2, 3 $. Other parameters are $\varOmega _{1 a} = 0.1 t$, $ \phi = 0.8\pi $, $\varDelta _{a, n} = - 0.5 t$, $ \kappa = 0.1 $ and lattice size 10.

  • [1]

    Braginskii V B and Manukin A B 1967 Sov. Phys. JETP 25 653

    [2]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [3]

    Liu Y L, Wang C, Zhang J, Liu Y X 2018 Chin. Phys. B 27 024204Google Scholar

    [4]

    Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar

    [5]

    You J Q, Nori F 2011 Nature 474 589Google Scholar

    [6]

    Martin I, Shnirman A, Lin T, Zoller P 2004 Phys. Rev. B 69 125339Google Scholar

    [7]

    Xiao Y, Yu Y F, Zhang Z M 2014 Opt. Express 22 17979Google Scholar

    [8]

    Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2019 Laser Phys. Lett. 16 015205Google Scholar

    [9]

    Wei W Y, Yu Y F, Zhang Z M 2018 Chin. Phys. B 27 034204Google Scholar

    [10]

    Huang S M, Agarwal G S 2010 Phys. Rev. A 81 033830Google Scholar

    [11]

    Zhang Z C, Wang Y P, Yu Y F, Zhang Z M 2019 Ann.Phys. 531 1800461Google Scholar

    [12]

    Wang K, Yu Y F, Zhang Z M 2019 Phys. Rev. A 100 053832Google Scholar

    [13]

    Li J, Yu R, Ding C, Wu Y 2014 Opt. Express 22 15024Google Scholar

    [14]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar

    [15]

    Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2018 J. Phys. B: At. Mol. Opt. Phys. 51 175504Google Scholar

    [16]

    Massel F, Heikkil T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpää M A 2011 Nature 480 351Google Scholar

    [17]

    Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2019 Chin. Phys. B 28 014202Google Scholar

    [18]

    Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204Google Scholar

    [19]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [20]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [21]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [22]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [23]

    Xu Z, Zhang Y, Chen S 2017 Phys. Rev. A 96 013606Google Scholar

    [24]

    Li L, Xu Z, Chen S 2014 Phys. Rev. B 89 085111Google Scholar

    [25]

    Li L, Chen S 2015 Phys. Rev. B 92 085118Google Scholar

    [26]

    Mei F, Zhu S L, Zhang Z M, Oh C H, Goldman N 2012 Phys. Rev. A 85 013638Google Scholar

    [27]

    Xu Z, Zhang R, Chen S, Fu L, Zhang Y 2020 Phys. Rev. A 101 013635Google Scholar

    [28]

    Wray L A, Xu V, Xia Y, Hsieh D, Fedorov A V, SanHor Y, Cava R J, Bansil A, Lin H, Hasan M Z 2011 Nat. Phys. 7 32Google Scholar

    [29]

    Malki M, Uhrig G S 2017 Phys. Rev. B 95 235118Google Scholar

    [30]

    Berg E, Dalla Torre E G, Giamarchi T, Altman E 2008 Phys. Rev. B 77 245119Google Scholar

    [31]

    Chitov G Y 2018 Phys. Rev. B 97 085131Google Scholar

    [32]

    Agrapidis C E, van den Brink J, Nishimoto S 2019 Phys. Rev. B 99 224418Google Scholar

    [33]

    Feng X Y, Zhang G M, Xiang T 2007 Phys. Rev. Lett 98 087204Google Scholar

    [34]

    Roque T F, Peano V, Yevtushenko O M, Marquardt F 2017 New J. Phys 19 013006Google Scholar

    [35]

    Wan L L, Lü X Y, Gao J H, Wu Y 2017 Opt. Express 25 017364Google Scholar

    [36]

    Qi L, Yan Y, Wang G L, Zhang S, Wang H F 2019 Phys. Rev. B 100 062323Google Scholar

    [37]

    Xu X W, Zhao Y J, Wang H, Chen A X, Liu Y X 2022 Front. Phys. 10 3389

    [38]

    Mei F, Xue Z Y, Zhang D W, Tian L, Lee C, Zhu S L 2016 Quantum Sci. Technol. 1 015006Google Scholar

    [39]

    Walls D F, Milburn G J 2008 Quantum Optics (Berlin: Springer) pp127–138

    [40]

    Clerk A A, Devoret M H, Girvin S M, Marquardt F, Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155Google Scholar

  • [1] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制. 物理学报, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] 张毅军, 慕晓冬, 郭乐勐, 张朋, 赵导, 白文华. 一种基于量子线路的支持向量机训练方案. 物理学报, 2023, 72(7): 070302. doi: 10.7498/aps.72.20222003
    [3] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展. 物理学报, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [4] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [5] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制. 物理学报, 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [6] 姚杰, 赵爱迪. 表面单分子量子态的探测和调控研究进展. 物理学报, 2022, 71(6): 060701. doi: 10.7498/aps.71.20212324
    [7] 贾亮广, 刘猛, 陈瑶瑶, 张钰, 王业亮. 单层二维量子自旋霍尔绝缘体1T'-WTe2研究进展. 物理学报, 2022, 71(12): 127308. doi: 10.7498/aps.71.20220100
    [8] 李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏. 浅光晶格中量子隧穿现象的实验观测. 物理学报, 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [9] 王伟, 王一平. 一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制. 物理学报, 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [10] 卫容宇, 聂敏, 杨光, 张美玲, 孙爱晶, 裴昌幸. 基于软件定义量子通信的自由空间量子通信信道参数自适应调整策略. 物理学报, 2019, 68(14): 140302. doi: 10.7498/aps.68.20190462
    [11] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收. 连续变量1.34 m量子纠缠态光场的实验制备. 物理学报, 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [12] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [13] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性. 物理学报, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [14] 卢道明, 邱昌东. 弱相干场原子-腔-光纤系统中的量子失协. 物理学报, 2014, 63(11): 110303. doi: 10.7498/aps.63.110303
    [15] 李锐奇, 卢道明. 原子与耦合腔相互作用系统中的量子失协. 物理学报, 2014, 63(3): 030301. doi: 10.7498/aps.63.030301
    [16] 王菊霞. 二能级原子与多模光场简并多光子共振相互作用系统中量子保真度的演化特性. 物理学报, 2014, 63(18): 184203. doi: 10.7498/aps.63.184203
    [17] 张英杰, 夏云杰, 任廷琦, 杜秀梅, 刘玉玲. 反Jaynes-Cummings模型下纠缠相干光场量子特性的研究. 物理学报, 2009, 58(2): 722-728. doi: 10.7498/aps.58.722
    [18] 江金环, 王永龙, 李子平. 稳态光折变空间孤子传输的量子理论. 物理学报, 2004, 53(12): 4070-4074. doi: 10.7498/aps.53.4070
    [19] 嵇英华. 脉冲信号对介观RLC电路量子态的影响. 物理学报, 2003, 52(3): 692-695. doi: 10.7498/aps.52.692
    [20] 嵇英华, 雷敏生, 谢芳森, 熊小华. 脉冲信号作用下介观LC电路的量子效应. 物理学报, 2001, 50(6): 1163-1166. doi: 10.7498/aps.50.1163
计量
  • 文章访问数:  4093
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-26
  • 修回日期:  2022-08-09
  • 上网日期:  2022-10-31
  • 刊出日期:  2022-11-20

/

返回文章
返回