搜索

x
中国物理学会期刊

基于可调频光力晶格中声子-光子拓扑性质的模拟和探测

CSTR: 32037.14.aps.71.20221286

Simulation and detection of the topological properties of phonon-photon in frequency-tunable optomechanical lattice

CSTR: 32037.14.aps.71.20221286
PDF
HTML
导出引用
  • 提出一种基于耦合光力系统的一维晶格理论方案,其中由多个腔场模和机械模式组成,通过调控系统的参数,使其获得集体动力学演化规律,来研究其中的拓扑相变和拓扑量子通道. 首先,通过分析该晶格系统的能谱和边缘态,研究其拓扑特性和拓扑量子通道. 其次,基于拓扑绝缘体的散射理论和输入输出关系,研究平均光子数和反射系数相的环绕数,探测系统的拓扑边缘态和拓扑不变量. 另外,考虑无序缺陷对拓扑特性的影响,发现系统受拓扑的保护,使边缘态对其具有鲁棒性;但无序和微扰大于能隙时,边态模和不变量会发生改变. 该理论研究结果可以应用于量子通信和量子信息处理中.

     

    We propose a one-dimensional lattice theory scheme based on a coupled optomechanical system consisting of multiple cavity field modes and mechanical modes, where their frequencies can be tuned. In this system, by manipulating parameters to obtain collective dynamical evolution of the system, we study topological properties and topological quantum channels in the system. Firstly, the topological insulator properties and topological quantum channels of the system are studied by modulating the periodic coupling parameters of the system and analyzing the characteristics of the energy spectrum and edge states of the system. It is found that edge state distributions can exhibit flipping processes, which can be applied to quantum information processing. Secondly, based on the scattering theory of topological insulators and the relationship between input and output, the variation characteristics of the steady-state average photon number of the cavity field and the winding number of the reflection coefficient phase are analyzed. It is found that the dissipation of the cavity field has a certain influence on the locality of the distribution of the average photon number in the lattice, and it also indirectly explains the locality of the edge states of the system, and the topological invariants are detected by the winding number. In addition, considering the effect of disordered defects on topological properties, we further analyze their effects on the energy spectrum of the system, the winding number of the reflection coefficient phase and the average photon number of the cavity field. It is found that two defects in the system cause different physical effects, and when their values are small, the edge states of the system are robust to it, which also shows that the system has the characteristics of topological protection. However, when disorder and perturbation are larger than the energy gap, the topological properties of the system will be annihilated, so that the edge states will be indistinguishable, and the topological invariants will change at the same time. The research results of this system can be generalized to other types of models and can be applied to quantum communication and quantum information processing, which will have certain constructive suggestions for the development of future quantum technology.

     

    目录

    /

    返回文章
    返回