搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相互作用费米子的量子模拟

罗雨晨 李晓鹏

引用本文:
Citation:

相互作用费米子的量子模拟

罗雨晨, 李晓鹏

Quantum simulation of interacting fermions

Luo Yu-Chen, Li Xiao-Peng
PDF
HTML
导出引用
  • 费米子是标准模型中物质构成的基本单元, 这些基本的粒子通过相互作用构建了物质世界. 同时, 费米子也是凝聚态物理领域和量子化学计算中需要处理的核心的微观自由度, 对理解高温超导电性、刻画量子磁性、描述分子结构和功能均起决定性作用. 但是在经典计算机上模拟多费米子模型比较普遍地会遇到负符号问题, 需要的计算复杂度往往随着粒子数的增长呈指数增长. 而超冷原子系统提供了一种直接对相互作用费米子进行量子模拟的有效手段和实验平台, 即通过微观可控的方式在物理实验中实现一个费米子模型, 通过对体系进行测量获取模型的微观和宏观特性, 从而加深对相关物理机制的认知和对关键参数的测定. 近年来, 实验对多费米子系统的基态、热平衡态、量子多体动力学进行了丰富的研究, 在BEC-BCS渡越、费米子哈伯德模型、量子多体局域化的研究中取得多项研究进展. 在量子模拟中对经典计算不能有效模拟的物理进行研究, 包括宏观的量子现象和微观的物理机制等, 体现了可控量子系统中的量子优越性. 本文将简单介绍相互作用费米子的模型以及其在描述量子多体物质状态中的重要性, 并阐述相互作用导致的各种超流和密度波关联物态, 而这些物态对理解高温超导和量子磁性有重要科学意义. 同时, 关联物态的模拟在经典计算机上往往具有指数复杂度, 而量子模拟的相关研究在标定相变参数、表征物态性质上体现了量子优越性.
    Fermions are basic building blocks in the standard model. Interactions among these elementary particles determine how they assemble and consequently form various states of matter in our nature. Simulating fermionic degrees of freedom is also a central problem in condensed matter physics and quantum chemistry, which is crucial to understanding high-temperature superconductivity, quantum magnetism and molecular structure and functionality. However, simulating interacting fermions by classical computing generically face the minus sign problem, encountering the exponential computation complexity. Ultracold atoms provide an ideal experimental platform for quantum simulation of interacting fermions. This highly-controllable system enables the realizing of nontrivial fermionic models, by which the physical properties of the models can be obtained by measurements in experiment. This deepens our understanding of related physical mechanisms and helps determine the key parameters. In recent years, there have been versatile experimental studies on quantum ground state physics, finite temperature thermal equilibrium, and quantum many-body dynamics, in fermionic quantum simulation systems. Quantum simulation offers an access to the physical problems that are intractable on the classical computer, including studying macroscopic quantum phenomena and microscopic physical mechanisms, which demonstrates the quantum advantages of controllable quantum systems. This paper briefly introduces the model of interacting fermions describing the quantum states of matter in such a system. Then we discuss various states of matter, which can arise in interacting fermionic quantum systems, including Cooper pair superfluids and density-wave orders. These exotic quantum states play important roles in describing high-temperature superconductivity and quantum magnetism, but their simulations on the classical computers have exponentially computational cost. Related researches on quantum simulation of interacting fermions in determining the phase diagrams and equation of states reflect the quantum advantage of such systems.
      通信作者: 李晓鹏, xiaopeng_li@fudan.edu.cn
      Corresponding author: Li Xiao-Peng, xiaopeng_li@fudan.edu.cn
    [1]

    Giorgini S, Pitaevskii L P, Stringari S 2008 Rev. Mod. Phys. 80 1215Google Scholar

    [2]

    McArdle S, Endo S, Aspuru-Guzik A, Benjamin S C, Yuan X 2020 Rev. Mod. Phys. 92 015003Google Scholar

    [3]

    Boll M, Hilker T A, Salomon G, Omran A, Nespolo J, Pollet L, Bloch I, Gross C 2016 Science 353 1257Google Scholar

    [4]

    Mazurenko A, Chiu C S, Ji G, Parsons M F, Kanasz-Nagy M, Schmidt R, Grusdt F, Demler E, Greif D, Greiner M 2017 Nature 545 462Google Scholar

    [5]

    Mitra D, Brown P T, Guardado-Sanchez E, Kondov S S, Devakul T, Huse D A, Schauß P, Bakr W S 2018 Nat. Phys. 14 173Google Scholar

    [6]

    Brown P T, Mitra D, Guardado-Sanchez E, Nourafkan R, Reymbaut A, Hébert C D, Bergeron S, Tremblay A M S, Kokalj J, Huse D A, Schauß P, Bakr W S 2019 Science 363 379Google Scholar

    [7]

    Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U, Bloch I 2015 Science 349 842Google Scholar

    [8]

    Lukin A, Rispoli M, Schittko R, Tai M E, Kaufman A M, Choi S, Khemani V, Léonard J, Greiner M 2019 Science 364 256Google Scholar

    [9]

    Sommer A, Ku M, Roati G, Zwierlein M W 2011 Nature 472 201Google Scholar

    [10]

    Cao C, Elliott E, Joseph J, Wu H, Petricka J, Schäfer T, Thomas J E 2011 Science 331 58Google Scholar

    [11]

    Krinner S, Lebrat M, Husmann D, Grenier C, Brantut J P, Esslinger T 2016 PNAS 113 8144Google Scholar

    [12]

    Li X, Luo X, Wang S, Xie K, Liu X P, Hu H, Chen Y A, Yao X C, Pan J W 2022 Science 375 528Google Scholar

    [13]

    Sompet P, Hirthe S, Bourgund D, Chalopin T, Bibo J, Koepsell J, Bojović P, Verresen R, Pollmann F, Salomon G, Gross C, Hilker T A, Bloch I 2022 Nature 606 484Google Scholar

    [14]

    Qiu X Z, Zou J, Qi X D, Li X P 2020 NPJ Quantum Inf. 6 1Google Scholar

    [15]

    Li X P, Liu W V 2016 Rep. Prog. Phys. 79 116401Google Scholar

    [16]

    Weinberg S 1994 Nucl. Phys. B 413 567Google Scholar

    [17]

    Qin M P, Chung C M, Shi H, Vitali E, Hubig C, Schollwöck U, White S R, Zhang S W 2020 Phys. Rev. X 10 031016Google Scholar

    [18]

    Jiang H C, Devereaux T P 2019 Science 365 1424Google Scholar

    [19]

    Guardado-Sanchez E, Spar B M, Schauss P, Belyansky R, Young J T, Bienias P, Gorshkov A V, Iadecola T, Bakr W S 2021 Phys. Rev. X 11 021036Google Scholar

    [20]

    Li X P 2021 Physics 17 74

    [21]

    Venu V, Xu P H, Mamaev M, Corapi F, Bilitewski T, D'Incao J P, Fujiwara C J, Rey A M, Thywissen J H 2022 arXiv: 2205.13506

    [22]

    Li X P, Sarma, S D 2015 Nat. Commun. 6 1

    [23]

    Liu X P, Yao X C, Deng Y J, Wang X Q, Wang Y X, Huang C J, Li X P, Chen Y A, Pan J W 2021 Phys. Rev. Lett. 126 185302Google Scholar

    [24]

    Ko B, Park J W, Shin Y I 2019 Nat. Phys. 15 1227Google Scholar

    [25]

    Liu X P, Yao X C, Li X P, Wang Y X, Huang C J, Deng Y J, Chen Y A, Pan J W 2022 Phys. Rev. Lett. 129 163602Google Scholar

    [26]

    Chesler P M, García-García A M, Liu H 2015 Phys. Rev. X 5 021015Google Scholar

    [27]

    Zhang X T, Chen Y, Wu Z M, Wang J, Fan J J, Deng S J, Wu H B 2021 Science 373 1359Google Scholar

    [28]

    Hachmann M, Kiefer Y, Riebesehl J, Eichberger R, Hemmerich A 2021 Phys. Rev. Lett. 127 033201Google Scholar

    [29]

    Bravyi S B, Kitaev A Y 2002 Ann. Phys. 298 210Google Scholar

    [30]

    Daley A J, Bloch I, Kokail C, Flannigan S, Pearson N, Troyer M, Zoller P 2022 Nature 607 667Google Scholar

  • [1]

    Giorgini S, Pitaevskii L P, Stringari S 2008 Rev. Mod. Phys. 80 1215Google Scholar

    [2]

    McArdle S, Endo S, Aspuru-Guzik A, Benjamin S C, Yuan X 2020 Rev. Mod. Phys. 92 015003Google Scholar

    [3]

    Boll M, Hilker T A, Salomon G, Omran A, Nespolo J, Pollet L, Bloch I, Gross C 2016 Science 353 1257Google Scholar

    [4]

    Mazurenko A, Chiu C S, Ji G, Parsons M F, Kanasz-Nagy M, Schmidt R, Grusdt F, Demler E, Greif D, Greiner M 2017 Nature 545 462Google Scholar

    [5]

    Mitra D, Brown P T, Guardado-Sanchez E, Kondov S S, Devakul T, Huse D A, Schauß P, Bakr W S 2018 Nat. Phys. 14 173Google Scholar

    [6]

    Brown P T, Mitra D, Guardado-Sanchez E, Nourafkan R, Reymbaut A, Hébert C D, Bergeron S, Tremblay A M S, Kokalj J, Huse D A, Schauß P, Bakr W S 2019 Science 363 379Google Scholar

    [7]

    Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U, Bloch I 2015 Science 349 842Google Scholar

    [8]

    Lukin A, Rispoli M, Schittko R, Tai M E, Kaufman A M, Choi S, Khemani V, Léonard J, Greiner M 2019 Science 364 256Google Scholar

    [9]

    Sommer A, Ku M, Roati G, Zwierlein M W 2011 Nature 472 201Google Scholar

    [10]

    Cao C, Elliott E, Joseph J, Wu H, Petricka J, Schäfer T, Thomas J E 2011 Science 331 58Google Scholar

    [11]

    Krinner S, Lebrat M, Husmann D, Grenier C, Brantut J P, Esslinger T 2016 PNAS 113 8144Google Scholar

    [12]

    Li X, Luo X, Wang S, Xie K, Liu X P, Hu H, Chen Y A, Yao X C, Pan J W 2022 Science 375 528Google Scholar

    [13]

    Sompet P, Hirthe S, Bourgund D, Chalopin T, Bibo J, Koepsell J, Bojović P, Verresen R, Pollmann F, Salomon G, Gross C, Hilker T A, Bloch I 2022 Nature 606 484Google Scholar

    [14]

    Qiu X Z, Zou J, Qi X D, Li X P 2020 NPJ Quantum Inf. 6 1Google Scholar

    [15]

    Li X P, Liu W V 2016 Rep. Prog. Phys. 79 116401Google Scholar

    [16]

    Weinberg S 1994 Nucl. Phys. B 413 567Google Scholar

    [17]

    Qin M P, Chung C M, Shi H, Vitali E, Hubig C, Schollwöck U, White S R, Zhang S W 2020 Phys. Rev. X 10 031016Google Scholar

    [18]

    Jiang H C, Devereaux T P 2019 Science 365 1424Google Scholar

    [19]

    Guardado-Sanchez E, Spar B M, Schauss P, Belyansky R, Young J T, Bienias P, Gorshkov A V, Iadecola T, Bakr W S 2021 Phys. Rev. X 11 021036Google Scholar

    [20]

    Li X P 2021 Physics 17 74

    [21]

    Venu V, Xu P H, Mamaev M, Corapi F, Bilitewski T, D'Incao J P, Fujiwara C J, Rey A M, Thywissen J H 2022 arXiv: 2205.13506

    [22]

    Li X P, Sarma, S D 2015 Nat. Commun. 6 1

    [23]

    Liu X P, Yao X C, Deng Y J, Wang X Q, Wang Y X, Huang C J, Li X P, Chen Y A, Pan J W 2021 Phys. Rev. Lett. 126 185302Google Scholar

    [24]

    Ko B, Park J W, Shin Y I 2019 Nat. Phys. 15 1227Google Scholar

    [25]

    Liu X P, Yao X C, Li X P, Wang Y X, Huang C J, Deng Y J, Chen Y A, Pan J W 2022 Phys. Rev. Lett. 129 163602Google Scholar

    [26]

    Chesler P M, García-García A M, Liu H 2015 Phys. Rev. X 5 021015Google Scholar

    [27]

    Zhang X T, Chen Y, Wu Z M, Wang J, Fan J J, Deng S J, Wu H B 2021 Science 373 1359Google Scholar

    [28]

    Hachmann M, Kiefer Y, Riebesehl J, Eichberger R, Hemmerich A 2021 Phys. Rev. Lett. 127 033201Google Scholar

    [29]

    Bravyi S B, Kitaev A Y 2002 Ann. Phys. 298 210Google Scholar

    [30]

    Daley A J, Bloch I, Kokail C, Flannigan S, Pearson N, Troyer M, Zoller P 2022 Nature 607 667Google Scholar

  • [1] 翟荟. 基于冷原子的非平衡量子多体物理研究. 物理学报, 2023, 72(23): 230701. doi: 10.7498/aps.72.20231375
    [2] 徐达, 王逸璞, 李铁夫, 游建强. 微波驱动下超导量子比特与磁振子的相干耦合. 物理学报, 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [3] 李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏. 浅光晶格中量子隧穿现象的实验观测. 物理学报, 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [4] 张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军. 基于磁光阱中6Li冷原子的真空度测量. 物理学报, 2022, 71(9): 094204. doi: 10.7498/aps.71.20212204
    [5] 陈阳, 张天炀, 郭光灿, 任希锋. 基于集成光芯片的量子模拟研究进展. 物理学报, 2022, 71(24): 244207. doi: 10.7498/aps.71.20221938
    [6] 文凯, 王良伟, 周方, 陈良超, 王鹏军, 孟增明, 张靖. 超冷87Rb原子在二维光晶格中Mott绝缘态的实验实现. 物理学报, 2020, 69(19): 193201. doi: 10.7498/aps.69.20200513
    [7] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量. 物理学报, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [8] 朱燕清, 张丹伟, 朱诗亮. 用光晶格模拟狄拉克、外尔和麦克斯韦方程. 物理学报, 2019, 68(4): 046701. doi: 10.7498/aps.68.20181929
    [9] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发. 物理学报, 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [10] 林弋戈, 方占军. 锶原子光晶格钟. 物理学报, 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [11] 魏春华, 颜树华, 杨俊, 王国超, 贾爱爱, 罗玉昆, 胡青青. 基于87Rb原子的大失谐光晶格的设计与操控. 物理学报, 2017, 66(1): 010701. doi: 10.7498/aps.66.010701
    [12] 田晓, 王叶兵, 卢本全, 刘辉, 徐琴芳, 任洁, 尹默娟, 孔德欢, 常宏, 张首刚. 锶玻色子的“魔术”波长光晶格装载实验研究. 物理学报, 2015, 64(13): 130601. doi: 10.7498/aps.64.130601
    [13] 赵旭, 赵兴东, 景辉. 利用光晶格自旋链中磁振子的激发模拟有限温度下光子的动力学 Casimir 效应. 物理学报, 2013, 62(6): 060302. doi: 10.7498/aps.62.060302
    [14] 杨树荣, 蔡宏强, 漆伟, 薛具奎. 光晶格中超流费米气体的能隙孤子. 物理学报, 2011, 60(6): 060304. doi: 10.7498/aps.60.060304
    [15] 徐志君, 刘夏吟. 光晶格中非相干超冷原子的密度关联效应. 物理学报, 2011, 60(12): 120305. doi: 10.7498/aps.60.120305
    [16] 邱 英, 何 军, 王彦华, 王 婧, 张天才, 王军民. 三维光学晶格中铯原子的装载与冷却. 物理学报, 2008, 57(10): 6227-6232. doi: 10.7498/aps.57.6227
    [17] 江开军, 李 可, 王 谨, 詹明生. Rb原子磁光阱中囚禁原子数目与实验参数的依赖关系. 物理学报, 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [18] 唐 霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱 荣. 冷原子穿越激光束的量子隧穿时间. 物理学报, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [19] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量. 物理学报, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [20] 罗有华, 黄整, 王育竹. 冷原子在静电势阱中的量子力学效应. 物理学报, 2002, 51(8): 1706-1710. doi: 10.7498/aps.51.1706
计量
  • 文章访问数:  5130
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-07
  • 修回日期:  2022-10-31
  • 上网日期:  2022-10-31
  • 刊出日期:  2022-11-20

/

返回文章
返回