搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于选择性支持向量机集成的海杂波背景中的微弱信号检测

行鸿彦 祁峥东 徐伟

引用本文:
Citation:

基于选择性支持向量机集成的海杂波背景中的微弱信号检测

行鸿彦, 祁峥东, 徐伟

Weak signal estimation in chaotic clutter using selective support vector machine ensemble

Xing HongYan, Qi ZhengDong, Xu Wei
PDF
导出引用
  • 基于复杂非线性系统相空间重构理论, 提出了一种混沌背景中微弱信号检测的选择性支持向量机集成的方法, 为了提高支持向量机集成的泛化能力, 采用K均值聚类算法选择每簇中精度最高的子支持向量机进行集成, 建立了混沌背景噪声的一步预测模型, 从预测误差中检测湮没在混沌背景噪声中的微弱目标信号(包括周期信号和瞬态信号), 最后分别以Lorenz系统和实测的IPIX雷达数据作为混沌背景噪声进行实验研究, 结果表明该方法能够有效地将混沌背景噪声中极其微弱的信号检测出来, 抑制噪声对混沌背景信号的影响, 与神经网络和传统支持向量机方法相比, 预测精度和检测门限方面的性能有显著提高.
    A method of detecting weak signals embedded in chaotic noise by selective support vector machine ensemble based on the theory of phase space reconstruction of the complicated nonlinear system is presented. For improving the generalization ability of support vector machine ensemble, K-means algorithm is used to select the most accurate individual support vector machine from every cluster for ensembling It is established a one-step predictive model that detects the weak signal, including transient signal and period is signals, from the predictive error in the chaotic sequences. It is illustrated in the experiment which is conducted to detect weak signals from Lorenz chaotic background and IPIX Sea Clutter, that the proposed method is highly effective to detect weak signal from a chaotic background and to minimize the influence of noise on weak signals, Compared wich the RBF neural network and SVM model, the new method presents great value in predicting accuracy and detection threshold.
    • 基金项目: 国家自然科学基金(批准号: 61072133)和江苏省"传感网与现代气象装备"优势学科平台资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61072133), and the Jiangsu Sensor Network and Modern Meteorological Equipment Preponderant Discipline Platform.
    [1]

    Haykin S, Li X B 1995 Proceedings IEEE 83 95

    [2]

    Zhang J S, Xiao X C 2000 Acta Phys. Sin.49 403 (in Chinese) [张家树, 肖先赐 2000 物理学报 49 403]

    [3]

    Xing H Y, Xu W 2007 Acta Phys. Sin. 56 3771 (in Chinese) [行鸿彦, 徐伟 2007 物理学报 56 3771]

    [4]

    Zhang J F, Hu S S 2007 Acta Phys. Sin. 56 713 (in Chinese) [张军峰, 胡寿松 2007 物理学报 56 713]

    [5]

    Cui W Z, Zhu C C, Bao W X, Liu J H 2004 Acta Phys. Sin. 53 3303 (in Chinese) [崔万照, 朱长纯, 保文星, 刘君华 2004 物理学报 53 3303]

    [6]

    Zhou Z H, Wu J X 2002 Artif. Intell 137 239

    [7]

    Grassberger P, Procaccia I 1983 Phys. Rev. Lett. 50 346

    [8]

    Cao L Y 1997 Physica D110 43

    [9]

    Kaplan D T, Glass L 1992 Phys. Rev. Lett. 68 427

    [10]

    Aguirre L A 1995 Phys. Lett. A 203 88

    [11]

    Kim H S, Eykholt R, Salas J D 1999 Physica D 127 48

    [12]

    Takens F 1981 Lecture Notes in Mathematics 898 366

    [13]

    Leo B 1996 Mach. Learn. 21 123

    [14]

    Zhang L, Zhou W, Jiao L 2004 IEEE Trans. Syst. Man Cyb. B 34 34

    [15]

    Wu J X, Zhou Z H, Shen X H, Chen Z Q 2000 J. Comput. Res. Dev. 37 2000 (in Chinese) [吴建鑫, 周志华, 沈学华, 陈兆乾 2000 计算机研究与发展 37 2000]

    [16]

    Kanungo T, Mount D M, Netanyahu N S, Piatko C D, Silverman R, Wu A Y 2002 IEEE Trans. Pattern Anal. Mach. Intell. 24 881

    [17]

    Xing H Y, Jin T L 2010 Acta Phys. Sin. 59 140 (in Chinese) [行鸿彦, 金天力 2010 物理学报 59 140]

    [18]

    Du J Y, Hou Y B 2007 J. Sci. Instru. 28 555 (in Chinese) [杜京义, 侯媛彬 2007 仪器仪表学报 28 555]

    [19]

    Wang F Y, Yuan G N, Xie Y J, Qiao X W 2009 Radar. Sci. Technol. 7 53 (in Chinese) [王福友, 袁赣南, 谢燕军, 乔相伟 2009 雷达科学与技术 7 53]

  • [1]

    Haykin S, Li X B 1995 Proceedings IEEE 83 95

    [2]

    Zhang J S, Xiao X C 2000 Acta Phys. Sin.49 403 (in Chinese) [张家树, 肖先赐 2000 物理学报 49 403]

    [3]

    Xing H Y, Xu W 2007 Acta Phys. Sin. 56 3771 (in Chinese) [行鸿彦, 徐伟 2007 物理学报 56 3771]

    [4]

    Zhang J F, Hu S S 2007 Acta Phys. Sin. 56 713 (in Chinese) [张军峰, 胡寿松 2007 物理学报 56 713]

    [5]

    Cui W Z, Zhu C C, Bao W X, Liu J H 2004 Acta Phys. Sin. 53 3303 (in Chinese) [崔万照, 朱长纯, 保文星, 刘君华 2004 物理学报 53 3303]

    [6]

    Zhou Z H, Wu J X 2002 Artif. Intell 137 239

    [7]

    Grassberger P, Procaccia I 1983 Phys. Rev. Lett. 50 346

    [8]

    Cao L Y 1997 Physica D110 43

    [9]

    Kaplan D T, Glass L 1992 Phys. Rev. Lett. 68 427

    [10]

    Aguirre L A 1995 Phys. Lett. A 203 88

    [11]

    Kim H S, Eykholt R, Salas J D 1999 Physica D 127 48

    [12]

    Takens F 1981 Lecture Notes in Mathematics 898 366

    [13]

    Leo B 1996 Mach. Learn. 21 123

    [14]

    Zhang L, Zhou W, Jiao L 2004 IEEE Trans. Syst. Man Cyb. B 34 34

    [15]

    Wu J X, Zhou Z H, Shen X H, Chen Z Q 2000 J. Comput. Res. Dev. 37 2000 (in Chinese) [吴建鑫, 周志华, 沈学华, 陈兆乾 2000 计算机研究与发展 37 2000]

    [16]

    Kanungo T, Mount D M, Netanyahu N S, Piatko C D, Silverman R, Wu A Y 2002 IEEE Trans. Pattern Anal. Mach. Intell. 24 881

    [17]

    Xing H Y, Jin T L 2010 Acta Phys. Sin. 59 140 (in Chinese) [行鸿彦, 金天力 2010 物理学报 59 140]

    [18]

    Du J Y, Hou Y B 2007 J. Sci. Instru. 28 555 (in Chinese) [杜京义, 侯媛彬 2007 仪器仪表学报 28 555]

    [19]

    Wang F Y, Yuan G N, Xie Y J, Qiao X W 2009 Radar. Sci. Technol. 7 53 (in Chinese) [王福友, 袁赣南, 谢燕军, 乔相伟 2009 雷达科学与技术 7 53]

  • [1] 刘剑鸣, 杨霞, 高跃龙, 刘福才. 类Liu系统在水声微弱信号检测中的应用研究. 物理学报, 2016, 65(7): 070501. doi: 10.7498/aps.65.070501
    [2] 张涛, 陈万忠, 李明阳. 基于频率切片小波变换和支持向量机的癫痫脑电信号自动检测. 物理学报, 2016, 65(3): 038703. doi: 10.7498/aps.65.038703
    [3] 行鸿彦, 张强, 徐伟. 海杂波FRFT域的分形特征分析及小目标检测方法. 物理学报, 2015, 64(11): 110502. doi: 10.7498/aps.64.110502
    [4] 行鸿彦, 张强, 徐伟. 混沌海杂波背景下的微弱信号检测混合算法. 物理学报, 2015, 64(4): 040506. doi: 10.7498/aps.64.040506
    [5] 熊刚, 张淑宁, 赵慧昌. 基于小波leaders的海杂波时变奇异谱分布分析. 物理学报, 2014, 63(15): 150503. doi: 10.7498/aps.63.150503
    [6] 孟庆芳, 陈珊珊, 陈月辉, 冯志全. 基于递归量化分析与支持向量机的癫痫脑电自动检测方法. 物理学报, 2014, 63(5): 050506. doi: 10.7498/aps.63.050506
    [7] 行鸿彦, 朱清清, 徐伟. 一种混沌海杂波背景下的微弱信号检测方法. 物理学报, 2014, 63(10): 100505. doi: 10.7498/aps.63.100505
    [8] 范剑, 赵文礼, 王万强. 基于Duffing振子的微弱周期信号混沌检测性能研究. 物理学报, 2013, 62(18): 180502. doi: 10.7498/aps.62.180502
    [9] 王芳芳, 张业荣. 基于支持向量机的电磁逆散射方法. 物理学报, 2012, 61(8): 084101. doi: 10.7498/aps.61.084101
    [10] 刘宁波, 关键, 黄勇, 王国庆, 何友. 海杂波的分段分数布朗运动模型 . 物理学报, 2012, 61(19): 190503. doi: 10.7498/aps.61.190503
    [11] 行鸿彦, 龚平, 徐伟. 海杂波背景下小目标检测的分形方法. 物理学报, 2012, 61(16): 160504. doi: 10.7498/aps.61.160504
    [12] 贺静波, 刘忠, 胡生亮. 基于海杂波散射特性的微弱信号检测方法. 物理学报, 2011, 60(11): 110208. doi: 10.7498/aps.60.110208
    [13] 邹建华, 兰林锋, 徐瑞霞, 杨伟, 彭俊彪. 有机薄膜晶体管驱动聚合物发光二极管研究. 物理学报, 2010, 59(2): 1275-1281. doi: 10.7498/aps.59.1275
    [14] 行鸿彦, 金天力. 基于对偶约束最小二乘支持向量机的混沌海杂波背景中的微弱信号检测. 物理学报, 2010, 59(1): 140-146. doi: 10.7498/aps.59.140
    [15] 张家树, 党建亮, 李恒超. 时空混沌序列的局域支持向量机预测. 物理学报, 2007, 56(1): 67-77. doi: 10.7498/aps.56.67
    [16] 蔡俊伟, 胡寿松, 陶洪峰. 基于选择性支持向量机集成的混沌时间序列预测. 物理学报, 2007, 56(12): 6820-6827. doi: 10.7498/aps.56.6820
    [17] 林 敏, 黄咏梅. 调制与解调用于随机共振的微弱周期信号检测. 物理学报, 2006, 55(7): 3277-3282. doi: 10.7498/aps.55.3277
    [18] 刘 涵, 刘 丁, 任海鹏. 基于最小二乘支持向量机的混沌控制. 物理学报, 2005, 54(9): 4019-4025. doi: 10.7498/aps.54.4019
    [19] 崔万照, 朱长纯, 保文星, 刘君华. 基于模糊模型支持向量机的混沌时间序列预测. 物理学报, 2005, 54(7): 3009-3018. doi: 10.7498/aps.54.3009
    [20] 崔万照, 朱长纯, 保文星, 刘君华. 混沌时间序列的支持向量机预测. 物理学报, 2004, 53(10): 3303-3310. doi: 10.7498/aps.53.3303
计量
  • 文章访问数:  5909
  • PDF下载量:  760
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-23
  • 修回日期:  2012-06-23
  • 刊出日期:  2012-12-05

基于选择性支持向量机集成的海杂波背景中的微弱信号检测

  • 1. 南京信息工程大学, 江苏省气象探测与信息处理重点实验室, 南京 210044; 南京信息工程大学电子与信息工程学院, 南京 210044
    基金项目: 国家自然科学基金(批准号: 61072133)和江苏省"传感网与现代气象装备"优势学科平台资助的课题.

摘要: 基于复杂非线性系统相空间重构理论, 提出了一种混沌背景中微弱信号检测的选择性支持向量机集成的方法, 为了提高支持向量机集成的泛化能力, 采用K均值聚类算法选择每簇中精度最高的子支持向量机进行集成, 建立了混沌背景噪声的一步预测模型, 从预测误差中检测湮没在混沌背景噪声中的微弱目标信号(包括周期信号和瞬态信号), 最后分别以Lorenz系统和实测的IPIX雷达数据作为混沌背景噪声进行实验研究, 结果表明该方法能够有效地将混沌背景噪声中极其微弱的信号检测出来, 抑制噪声对混沌背景信号的影响, 与神经网络和传统支持向量机方法相比, 预测精度和检测门限方面的性能有显著提高.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回