搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类Liu系统在水声微弱信号检测中的应用研究

刘剑鸣 杨霞 高跃龙 刘福才

引用本文:
Citation:

类Liu系统在水声微弱信号检测中的应用研究

刘剑鸣, 杨霞, 高跃龙, 刘福才

Application of similar Liu system in underwater weak signal detection

Liu Jian-Ming, Yang Xia, Gao Yue-Long, Liu Fu-Cai
PDF
导出引用
  • 利用三阶混沌系统构造了一种新的微弱信号检测系统类Liu系统, 对类Liu 系统进行了深度的理论分析. 类Liu系统中, 当输入待测信号幅值大于某临界值时, 系统可达到平衡点S0, S0中系统变量x平衡于摄动力信号, 系统变量y, z收敛于零态, 且S0 对应的Lyapunov指数小于零. 通过Matlab仿真、Multisim电路仿真以及实际电路证明了类Liu系统的周期态收敛性及广域检测性, 解决了传统Duffing系统进行微弱信号检测时周期态不收敛、只能进行窄域检测等问题, 同时谱级信噪比范围仍可达-46.57 dB. 类Liu系统采用了全新的设计理念, 具有较高的实用价值, 对未来海洋物联网中的水声通信有一定参考价值.
    Weak signal detection is a vital technology in underwater acoustic communication with strong noise background. In this area, non-autonomous Duffing system is still widely used, and a lot of researches focus on enhancing the ability to detect weak signal and to find out the detection limitation of the Duffing system. Moreover, great achievements have already made. But problems still exist such as non-convergence of the periodic state of the Duffing system and its narrow detection domain. Unfortunately, researches on weak signal detection by using other systems are still rare. In order to solve the above problems, a new three-dimensional similar Liu chaotic system for weak signal detection is proposed. A thorough theoretical analysis for the similar Liu chaotic system is given, and its equilibrium point and the Lyapunov index are deduced and analyzed in detail. The major conclusion is that the variable x of the new system becomes a deformation signal when the input signal amplitude is greater than a certain critical value, the variables y and z converge to zero, and the Lyapunov exponents are less than zero at the same time. This means that no matter how strong the input signal is, the detection can be achieved by using a similar Liu chaotic system as long as its amplitude exceeds the threshold value. The periodic convergence and wide area detection of the similar Liu chaotic system are proved by the Matlab simulation, the Multisim circuit simulation, and the actual circuit test. This new system solves the two problems of the period convergence and narrow detection domain for the traditional Duffing system. The periodic state and chaotic state are easy to distinguish when detected. The periodic state can be maintained when the signal amplitude changes from short distance to long distance in a new system. The spectral signal-to-noise ratio range increases up to -46:57 dB in the similar Liu chaotic system. The characteristics of the new system are only effected by its structure and parameters. The system does not rely on the external factors, and it can be extended. By using some switching devices, the conversion between the chaotic state and periodic state can be realized in the practical engineering applications with a higher detection accuracy. The new design concept of the similar Liu chaotic system shows a very high practical value. It will lay a certain foundation for the underwater acoustic communication of the ocean internet of things in the future.
      通信作者: 刘剑鸣, jm_liu06@126.com
      Corresponding author: Liu Jian-Ming, jm_liu06@126.com
    [1]

    Chitre M, Shahabudeen S, Stojanovic M 2008 Marine Technol. Sci. J. 42 103

    [2]

    Birx D L, Pipenberg S J 1992 Int. Joint Conf. Neural Networks 2 881

    [3]

    Wang G Y, Chen D J, Lin J Y, Chen X 1999IEEE Trans. Ind. Electron. 46 440

    [4]

    Nie C Y, Shi Y W, Liu Z Z 2002 Trans. China Electrotech. Soc. 17 87 (in Chinese) [聂春燕, 石要武, 刘振泽 2002 电工技术学报 17 87]

    [5]

    Shang Q F, Qiao H Z, Yin C Q 2005 Chin. J. Sci. Instrum. 26 1271 (in Chinese) [尚秋峰, 乔宏志, 尹成群 2005 仪器仪表学报 26 1271]

    [6]

    Li Y, Yang B J, Yuan Y, Liu X H 2007 Chin. Phys. B 16 1072

    [7]

    Rui G S, Zhang Y, Miao J, Zhang S, Shi T 2012 Acta Electron. Sin. 40 1269 (in Chinese) [芮国胜, 张洋, 苗俊, 张嵩, 史特 2012 电子学报 40 1269]

    [8]

    Liu H B, Wu D W, Jin W, Wang Y Q 2013 Acta Phys. Sin. 62 050501 (in Chinese) [刘海波, 吴德伟, 金伟, 王永庆 2013 物理学报 62 050501]

    [9]

    Hu W J, Liu Z Z, Li Z H 2011 Electric Machines and Control 15 80 (in Chinese) [胡文静, 刘志珍, 厉志辉 2011 电机与控制学报 15 80]

    [10]

    Zeng Z Z, Zhou Y, Hu K 2015 Acta Phys. Sin. 64 070505 (in Chinese) [曾喆昭, 周勇, 胡凯 2015 物理学报 64 070505]

    [11]

    Choe C U, Hohne K, Benner H, Kivshar Y S 2005 Phys. Rev. E 72 036206

    [12]

    Wang M J, Zeng Y C, Xie C Q, Zhu G F, Tang S H 2012 Acta Phys. Sin. 61 180502 (in Chinese) [王梦蛟, 曾以成, 谢常清, 朱高峰, 唐淑红 2012 物理学报 61 180502]

    [13]

    Xu Y C, Yang C L, Qu X D 2010 Chin. Phys. B 19 030516

    [14]

    Zhou F, Shen M N 2014 Machinery 41 5 (in Chinese) [周芳, 沈媚娜 2014 机械 41 5]

    [15]

    Liu C X 2006 Far East J. Dyn. Sys. 8 51

    [16]

    Mcdonald E J, Higham D J 2001 Electron. Trans. Numer. Anal. 12 234

  • [1]

    Chitre M, Shahabudeen S, Stojanovic M 2008 Marine Technol. Sci. J. 42 103

    [2]

    Birx D L, Pipenberg S J 1992 Int. Joint Conf. Neural Networks 2 881

    [3]

    Wang G Y, Chen D J, Lin J Y, Chen X 1999IEEE Trans. Ind. Electron. 46 440

    [4]

    Nie C Y, Shi Y W, Liu Z Z 2002 Trans. China Electrotech. Soc. 17 87 (in Chinese) [聂春燕, 石要武, 刘振泽 2002 电工技术学报 17 87]

    [5]

    Shang Q F, Qiao H Z, Yin C Q 2005 Chin. J. Sci. Instrum. 26 1271 (in Chinese) [尚秋峰, 乔宏志, 尹成群 2005 仪器仪表学报 26 1271]

    [6]

    Li Y, Yang B J, Yuan Y, Liu X H 2007 Chin. Phys. B 16 1072

    [7]

    Rui G S, Zhang Y, Miao J, Zhang S, Shi T 2012 Acta Electron. Sin. 40 1269 (in Chinese) [芮国胜, 张洋, 苗俊, 张嵩, 史特 2012 电子学报 40 1269]

    [8]

    Liu H B, Wu D W, Jin W, Wang Y Q 2013 Acta Phys. Sin. 62 050501 (in Chinese) [刘海波, 吴德伟, 金伟, 王永庆 2013 物理学报 62 050501]

    [9]

    Hu W J, Liu Z Z, Li Z H 2011 Electric Machines and Control 15 80 (in Chinese) [胡文静, 刘志珍, 厉志辉 2011 电机与控制学报 15 80]

    [10]

    Zeng Z Z, Zhou Y, Hu K 2015 Acta Phys. Sin. 64 070505 (in Chinese) [曾喆昭, 周勇, 胡凯 2015 物理学报 64 070505]

    [11]

    Choe C U, Hohne K, Benner H, Kivshar Y S 2005 Phys. Rev. E 72 036206

    [12]

    Wang M J, Zeng Y C, Xie C Q, Zhu G F, Tang S H 2012 Acta Phys. Sin. 61 180502 (in Chinese) [王梦蛟, 曾以成, 谢常清, 朱高峰, 唐淑红 2012 物理学报 61 180502]

    [13]

    Xu Y C, Yang C L, Qu X D 2010 Chin. Phys. B 19 030516

    [14]

    Zhou F, Shen M N 2014 Machinery 41 5 (in Chinese) [周芳, 沈媚娜 2014 机械 41 5]

    [15]

    Liu C X 2006 Far East J. Dyn. Sys. 8 51

    [16]

    Mcdonald E J, Higham D J 2001 Electron. Trans. Numer. Anal. 12 234

  • [1] 黄泽徽, 李亚安, 陈哲, 刘恋. 基于多尺度熵的Duffing混沌系统阈值确定方法. 物理学报, 2020, 69(16): 160501. doi: 10.7498/aps.69.20191642
    [2] 贾美美, 蒋浩刚, 李文静. 新Chua多涡卷混沌吸引子的产生及应用. 物理学报, 2019, 68(13): 130503. doi: 10.7498/aps.68.20182183
    [3] 胡串, 李志军, 陈茜茜. 负参数空间分数阶Chua系统的动力学行为及实验验证. 物理学报, 2017, 66(23): 230502. doi: 10.7498/aps.66.230502
    [4] 曾喆昭, 周勇, 胡凯. 基于扩展型Duffing振子的局部放电信号检测方法研究. 物理学报, 2015, 64(7): 070505. doi: 10.7498/aps.64.070505
    [5] 行鸿彦, 张强, 徐伟. 混沌海杂波背景下的微弱信号检测混合算法. 物理学报, 2015, 64(4): 040506. doi: 10.7498/aps.64.040506
    [6] 洪庆辉, 李志军, 曾金芳, 曾以成. 基于电流反馈运算放大器的忆阻混沌电路设计与仿真. 物理学报, 2014, 63(18): 180502. doi: 10.7498/aps.63.180502
    [7] 范剑, 赵文礼, 张明路, 檀润华, 王万强. 随机共振动力学机理及其微弱信号检测方法的研究. 物理学报, 2014, 63(11): 110506. doi: 10.7498/aps.63.110506
    [8] 洪庆辉, 曾以成, 李志军. 含磁控和荷控两种忆阻器的混沌电路设计与仿真. 物理学报, 2013, 62(23): 230502. doi: 10.7498/aps.62.230502
    [9] 吴勇峰, 黄绍平, 金国彬. 基于耦合Duffing振子的局部放电信号检测方法研究. 物理学报, 2013, 62(13): 130505. doi: 10.7498/aps.62.130505
    [10] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [11] 范剑, 赵文礼, 王万强. 基于Duffing振子的微弱周期信号混沌检测性能研究. 物理学报, 2013, 62(18): 180502. doi: 10.7498/aps.62.180502
    [12] 行鸿彦, 祁峥东, 徐伟. 基于选择性支持向量机集成的海杂波背景中的微弱信号检测. 物理学报, 2012, 61(24): 240504. doi: 10.7498/aps.61.240504
    [13] 李春来, 禹思敏. 一个新的超混沌系统及其自适应追踪控制. 物理学报, 2012, 61(4): 040504. doi: 10.7498/aps.61.040504
    [14] 包伯成, 胡文, 许建平, 刘中, 邹凌. 忆阻混沌电路的分析与实现. 物理学报, 2011, 60(12): 120502. doi: 10.7498/aps.60.120502
    [15] 吴勇峰, 张世平, 孙金玮, Peter Rolfe, 李智. 脉冲激励下环形耦合Duffing振子间的瞬态同步突变现象. 物理学报, 2011, 60(10): 100509. doi: 10.7498/aps.60.100509
    [16] 吴勇峰, 张世平, 孙金玮, Peter Rolfe. 环形耦合Duffing振子间的同步突变. 物理学报, 2011, 60(2): 020511. doi: 10.7498/aps.60.020511
    [17] 周小勇. 一种具有恒Lyapunov指数谱的混沌系统及其电路仿真. 物理学报, 2011, 60(10): 100503. doi: 10.7498/aps.60.100503
    [18] 行鸿彦, 金天力. 基于对偶约束最小二乘支持向量机的混沌海杂波背景中的微弱信号检测. 物理学报, 2010, 59(1): 140-146. doi: 10.7498/aps.59.140
    [19] 刘明华, 冯久超. 一个新的超混沌系统. 物理学报, 2009, 58(7): 4457-4462. doi: 10.7498/aps.58.4457
    [20] 林 敏, 黄咏梅. 调制与解调用于随机共振的微弱周期信号检测. 物理学报, 2006, 55(7): 3277-3282. doi: 10.7498/aps.55.3277
计量
  • 文章访问数:  7122
  • PDF下载量:  330
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-14
  • 修回日期:  2016-01-12
  • 刊出日期:  2016-04-05

/

返回文章
返回