搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于非完整二维相空间分量置换的混沌检测方法

朱胜利 甘露

引用本文:
Citation:

一种基于非完整二维相空间分量置换的混沌检测方法

朱胜利, 甘露

A chaotic signal detection method based on the component permutation of the incomplete two-dimensional phase-space

Zhu Sheng-Li, Gan Lu
PDF
导出引用
  • 由于混沌时间序列和随机过程具有很多类似的性质, 因而在实际中很难将两者区分开来. 混沌信号检测与识别是混沌时间序列分析中一个重要的课题. 混沌信号是由确定性的混沌映射或混沌系统产生的, 相比于高斯白噪声序列, 其在非完整的二维相空间中表现出更加丰富的结构特性. 本文通过研究混沌时间序列和高斯白噪声序列在非完整二维相空间中的分布特性, 利用混沌信号的非线性动力学特性, 提出了一种基于非完整二维相空间分量置换的混沌信号检测方法. 该方法首先由接收序列得到非完整的二维相空间, 基于第一维分量大小关系实现对第二维分量的置换与分组, 进一步求得F检验统计量. 然后利用混沌系统的局部特性, 获取非完整二维相空间的动力学结构信息, 实现对混沌序列的有效检测. 在高斯白噪声条件下对多种混沌信号进行了信号检测的数值仿真. 仿真结果表明: 相比置换熵检测, 本文所提算法所需数据量小、计算简单以及具有更低的时间复杂度, 同时对噪声具有更好的鲁棒性.
    Detection and identification of chaotic signal is very important in the chaotic time series analysis. It is not easy to distinguish chaotic time series from stochastic processes since they share some similar natures. The detection methods to capture and utilize the structure of state-space dynamics can be very effective. In practice, it is very hard to obtain full information about the structure, and accurate phase-space reconstruction from scalar time series data is also a real challenge. However, the chaotic signals also show fundamental dynamical structure in the incomplete two-dimensional phase-space for the reason that they are generated by the deterministic chaotic systems or maps. Based on the fact that the distribution of chaotic signals is quite different from that of the noise signals in the incomplete two-dimensional phase-space, a novel detection method, which depends on the component permutation of the incomplete two-dimensional phase-space, is proposed. The incomplete two-dimensional phase-space is first obtained through the time series. Then, the first component is sorted in the ascending order, and the second component is permutated accordingly. The permutated component shows more structure characteristics for chaotic signals because of the relation between these two components. But this phenomenon does not appear in the noise because these components are independent of each other. And then, the permutated component is segmented into several groups properly. Finally, the sample mean and sample variance of different groups are calculated to obtain the sequence of sample mean (SSM) and the sequence of sample variance (SSV). Meanwhile, by calculating the variance of the SSM and the mean of the SSV, the test statistic is obtained. Furthermore, it is proved that this test statistic follows the F distribution under the null hypothesis of Gaussian noise. The proposed method is first adopted for detecting the several chaotic signals under different data lengths in Gaussian noise conditions. The simulation results show that the proposed method can detect chaotic signals effectively under low signal-to-noise ratio and it also has a good robustness against noise compared with the permutation entropy test. The time consumptions of the proposed method under different data lengths are evaluated and also compared with the results of permutation entropy test, showing that the proposed method can detect chaotic signals quickly, and the time complexity is much lower than that of the permutation entropy test. The theoretical analysis and simulation results demonstrate that the proposed method not only outperforms the permutation entropy test with lower complexity, but also has a better robustness against noise.
      通信作者: 朱胜利, zhushengli_123@163.com
    • 基金项目: 国家自然科学基金委员会-中国工程物理研究院联合基金(批准号: U1530126)资助的课题.
      Corresponding author: Zhu Sheng-Li, zhushengli_123@163.com
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1530126).
    [1]

    Kaplan D T, Glass L 1992 Phys. Rev. Lett. 68 427

    [2]

    Wayland R, Bromley D, Pickett D, Passamante A 1993 Phys. Rev. Lett. 70 580

    [3]

    Salvino L W, Cawley R 1994 Phys. Rev. Lett. 73 1091

    [4]

    Ortega G J, Louis E 1998 Phys. Rev. Lett. 81 4345

    [5]

    Jeong J, Gore J C, Peterson B S 2002 IEEE T. Bio-med. Eng. 49 1374

    [6]

    Barahona M, Poon C S 1996 Nature 381 215

    [7]

    Poon C S, Barahona M 2001 P. Natl. Acad. Sci.USA 98 7107

    [8]

    Lei M, Meng G 2008 Chaos Solitons Fract. 36 512

    [9]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [10]

    Liu X F, Wang Y 2009 Chin. Phys. B 18 2690

    [11]

    Bian C, Qin C, Ma Q D Y, Shen Q 2012 Phys. Rev. E 85 021906

    [12]

    Amigó J M, Kocarev L, Szczepanski J 2006 Phys. Lett. A 355 27

    [13]

    Amigó J M, Zambrano S, Sanjuán M A F 2007 Europhys. Lett. 79 5001

    [14]

    Rosso O A, Fuentes M A 2007 Phys. Rev. Lett. 99 154102

    [15]

    Matilla-García M, Marín M R 2008 J. Econometris 144 139

    [16]

    López F, Matilla-García M, Mur J, Marín M R 2010 Reg. Sci. Urban Econ. 40 106

    [17]

    Matilla-García M, Marín M R 2011 Geogr. Anal. 43 228

    [18]

    Riedl M, Mller A, Wessel N 2013 Eur. Phys. J.- Spec. Top. 222 249

    [19]

    Ouyang G, Dang C, Richards D A, Li X 2010 Clin. Neurophysiol. 121 694

    [20]

    Nicolaou N, Georgiou J 2012 Expert Syst. Appl. 39 202

    [21]

    Zunino L, Zanin M, Tabak B M, Pérez D G, Rosso O A 2009 Physica A 388 2854

    [22]

    Ruiz M C, Guillamón A, Gabaldón A 2012 Entropy-Switz 14 74

    [23]

    Li J, Yan J, Liu X, Ouyang G 2014 Entropy-Switz 16 3049

    [24]

    Toomey J P, Kane D M 2014 Opt. Express 22 1713

    [25]

    Weck P J, Schaffner D A, Brown M R 2015 Phys. Rev. E 91 023101

    [26]

    Chen X, Jin N D, Zhao A, Gao Z K, Zhai L S, Sun B 2015 Physica A 417 230

    [27]

    Wang F P, Wang Z J, Guo J B 2002 Acta Phys. Sin. 51 474 (in Chinese) [汪芙平, 王赞基, 郭静波 2002 物理学报 51 474]

    [28]

    Zheng H Z, Hu J F, Liu L D, He Z S 2011 Acta Phys. Sin. 60 110507 (in Chinese) [郑皓洲, 胡进峰, 刘立东, 何子述 2011 物理学报 60 110507]

    [29]

    Packard N H, Crutchfield J P, Farmer J D, Show R S 1980 Phys. Rev. Lett. 45 712

    [30]

    Takens F 1981 Dynamical Systems and Turbulence (Berlin: Springer Verlag) p366

    [31]

    Zhang J, Luo X, Small M 2006 Phys. Rev. E 73 016216

    [32]

    Garland J, Bradley E, Meiss J D 2015 arXiv: 1506.01128[math.DS]

    [33]

    Bradley E, Kantz H 2015 Chaos 25 097610

    [34]

    Garland J, Bradley E 2015 arXiv:1503.01678[nlin.CD]

  • [1]

    Kaplan D T, Glass L 1992 Phys. Rev. Lett. 68 427

    [2]

    Wayland R, Bromley D, Pickett D, Passamante A 1993 Phys. Rev. Lett. 70 580

    [3]

    Salvino L W, Cawley R 1994 Phys. Rev. Lett. 73 1091

    [4]

    Ortega G J, Louis E 1998 Phys. Rev. Lett. 81 4345

    [5]

    Jeong J, Gore J C, Peterson B S 2002 IEEE T. Bio-med. Eng. 49 1374

    [6]

    Barahona M, Poon C S 1996 Nature 381 215

    [7]

    Poon C S, Barahona M 2001 P. Natl. Acad. Sci.USA 98 7107

    [8]

    Lei M, Meng G 2008 Chaos Solitons Fract. 36 512

    [9]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [10]

    Liu X F, Wang Y 2009 Chin. Phys. B 18 2690

    [11]

    Bian C, Qin C, Ma Q D Y, Shen Q 2012 Phys. Rev. E 85 021906

    [12]

    Amigó J M, Kocarev L, Szczepanski J 2006 Phys. Lett. A 355 27

    [13]

    Amigó J M, Zambrano S, Sanjuán M A F 2007 Europhys. Lett. 79 5001

    [14]

    Rosso O A, Fuentes M A 2007 Phys. Rev. Lett. 99 154102

    [15]

    Matilla-García M, Marín M R 2008 J. Econometris 144 139

    [16]

    López F, Matilla-García M, Mur J, Marín M R 2010 Reg. Sci. Urban Econ. 40 106

    [17]

    Matilla-García M, Marín M R 2011 Geogr. Anal. 43 228

    [18]

    Riedl M, Mller A, Wessel N 2013 Eur. Phys. J.- Spec. Top. 222 249

    [19]

    Ouyang G, Dang C, Richards D A, Li X 2010 Clin. Neurophysiol. 121 694

    [20]

    Nicolaou N, Georgiou J 2012 Expert Syst. Appl. 39 202

    [21]

    Zunino L, Zanin M, Tabak B M, Pérez D G, Rosso O A 2009 Physica A 388 2854

    [22]

    Ruiz M C, Guillamón A, Gabaldón A 2012 Entropy-Switz 14 74

    [23]

    Li J, Yan J, Liu X, Ouyang G 2014 Entropy-Switz 16 3049

    [24]

    Toomey J P, Kane D M 2014 Opt. Express 22 1713

    [25]

    Weck P J, Schaffner D A, Brown M R 2015 Phys. Rev. E 91 023101

    [26]

    Chen X, Jin N D, Zhao A, Gao Z K, Zhai L S, Sun B 2015 Physica A 417 230

    [27]

    Wang F P, Wang Z J, Guo J B 2002 Acta Phys. Sin. 51 474 (in Chinese) [汪芙平, 王赞基, 郭静波 2002 物理学报 51 474]

    [28]

    Zheng H Z, Hu J F, Liu L D, He Z S 2011 Acta Phys. Sin. 60 110507 (in Chinese) [郑皓洲, 胡进峰, 刘立东, 何子述 2011 物理学报 60 110507]

    [29]

    Packard N H, Crutchfield J P, Farmer J D, Show R S 1980 Phys. Rev. Lett. 45 712

    [30]

    Takens F 1981 Dynamical Systems and Turbulence (Berlin: Springer Verlag) p366

    [31]

    Zhang J, Luo X, Small M 2006 Phys. Rev. E 73 016216

    [32]

    Garland J, Bradley E, Meiss J D 2015 arXiv: 1506.01128[math.DS]

    [33]

    Bradley E, Kantz H 2015 Chaos 25 097610

    [34]

    Garland J, Bradley E 2015 arXiv:1503.01678[nlin.CD]

  • [1] 吕善翔, 冯久超. 一种混沌映射的相空间去噪方法. 物理学报, 2013, 62(23): 230503. doi: 10.7498/aps.62.230503
    [2] 范剑, 赵文礼, 王万强. 基于Duffing振子的微弱周期信号混沌检测性能研究. 物理学报, 2013, 62(18): 180502. doi: 10.7498/aps.62.180502
    [3] 陈帝伊, 柳烨, 马孝义. 基于径向基函数神经网络的混沌时间序列相空间重构双参数联合估计. 物理学报, 2012, 61(10): 100501. doi: 10.7498/aps.61.100501
    [4] 张春涛, 马千里, 彭宏, 姜友谊. 基于条件熵扩维的多变量混沌时间序列相空间重构. 物理学报, 2011, 60(2): 020508. doi: 10.7498/aps.60.020508
    [5] 张春涛, 马千里, 彭宏. 基于信息熵优化相空间重构参数的混沌时间序列预测. 物理学报, 2010, 59(11): 7623-7629. doi: 10.7498/aps.59.7623
    [6] 张淑清, 贾健, 高敏, 韩叙. 混沌时间序列重构相空间参数选取研究. 物理学报, 2010, 59(3): 1576-1582. doi: 10.7498/aps.59.1576
    [7] 路凯, 方建会, 张明江, 王鹏. 相空间中离散完整系统的Noether对称性和Mei对称性. 物理学报, 2009, 58(11): 7421-7425. doi: 10.7498/aps.58.7421
    [8] 敬晓丹, 吕 翎. 相空间压缩实现时空混沌系统的广义同步. 物理学报, 2008, 57(8): 4766-4770. doi: 10.7498/aps.57.4766
    [9] 谌 龙, 王德石. 基于参数非共振激励混沌抑制原理的微弱方波信号检测. 物理学报, 2007, 56(9): 5098-5102. doi: 10.7498/aps.56.5098
    [10] 张 毅. 相空间中单面完整约束力学系统的对称性与守恒量. 物理学报, 2005, 54(10): 4488-4495. doi: 10.7498/aps.54.4488
    [11] 肖方红, 阎桂荣, 韩宇航. 混沌时序相空间重构参数确定的信息论方法. 物理学报, 2005, 54(2): 550-556. doi: 10.7498/aps.54.550
    [12] 楼智美. 相空间中二阶线性非完整系统的形式不变性. 物理学报, 2004, 53(7): 2046-2049. doi: 10.7498/aps.53.2046
    [13] 陈园园, 王 奇, 施解龙. 空间非相干多分量光束构成的非相干耦合屏蔽孤子对. 物理学报, 2004, 53(9): 2980-2985. doi: 10.7498/aps.53.2980
    [14] 陈园园, 王奇, 施解龙. 非相干多分量空间双稳态孤子. 物理学报, 2004, 53(4): 1070-1075. doi: 10.7498/aps.53.1070
    [15] 游荣义, 陈 忠, 徐慎初, 吴伯僖. 基于小波变换的混沌信号相空间重构研究. 物理学报, 2004, 53(9): 2882-2888. doi: 10.7498/aps.53.2882
    [16] 甘建超, 肖先赐. 基于相空间邻域的混沌时间序列自适应预测滤波器(Ⅱ)非线性自适应滤波. 物理学报, 2003, 52(5): 1102-1107. doi: 10.7498/aps.52.1102
    [17] 甘建超, 肖先赐. 基于相空间邻域的混沌时间序列自适应预测滤波器(Ⅰ)线性自适应滤波. 物理学报, 2003, 52(5): 1096-1101. doi: 10.7498/aps.52.1096
    [18] 陈培胜, 方建会. 相空间中非完整非保守系统的形式不变性. 物理学报, 2003, 52(5): 1044-1047. doi: 10.7498/aps.52.1044
    [19] 李 月, 杨宝俊, 石要武. 色噪声背景下微弱正弦信号的混沌检测. 物理学报, 2003, 52(3): 526-530. doi: 10.7498/aps.52.526
    [20] 罗晓曙. 利用相空间压缩实现混沌与超混沌控制. 物理学报, 1999, 48(3): 402-407. doi: 10.7498/aps.48.402
计量
  • 文章访问数:  5833
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-27
  • 修回日期:  2016-01-12
  • 刊出日期:  2016-04-05

/

返回文章
返回