搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种混沌映射的相空间去噪方法

吕善翔 冯久超

引用本文:
Citation:

一种混沌映射的相空间去噪方法

吕善翔, 冯久超

A phase space denoising method for chaotic maps

Lü Shan-Xiang, Feng Jiu-Chao
PDF
导出引用
  • 对于混沌映射来说,它们的频谱比混沌流的频谱更广阔,与噪声频谱的重叠率更高,所以混沌流的去噪方法对它们并不适用. 在半盲分析法的框架下,混沌系统的参数估计问题终将归结为最小二乘估计问题. 本文从最小二乘拟合的角度出发估计混沌映射的演化参数,进而通过相空间重构以及投影操作,实现对观测信号的噪声抑制. 实验结果表明,该算法的去噪效果优于扩展卡尔曼滤波器(extended Kalman filter,EKF)和无先导卡尔曼滤波器(unscneted Kalman filter,UKF),并且能够较大程度地将信号源的混沌特征量还原.
    The spectra of chaotic maps are much wider than those of chaotic flows, and their overlapped regions with Gaussian white noise are much larger, thus the denoising method for chaotic flows is unsuitable for chaotic maps. Within a semi-blind analysing framework, the parameter estimating problem for chaotic systems can be boiled down to a least square evaluating procedure. In this paper we start with estimating the evolution parameters of chaotic maps by using a least square fitting method. After that, phase space reconstruction and projection operation are employed to get noise suppression for the observed data. The simulation results indicate that the proposed algorithm surpasses the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) in denoising, as well as maintaining the characteristic quantities of chaotic maps.
    • 基金项目: 国家自然科学基金(批准号:60872123)、国家-广东省自然科学基金联合基金(批准号:U0835001)、广东省高层次人才项目基金(批准号:N9101070)和中央高校基本业务费(批准号:2012ZM0025)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60872123), the Joint Fund of the National Natural Science Foundation and the Natural Science Foundation of Guangdong Province, China (Grant No. U0835001), the Fund for Higher-level Talent in Guangdong Province (Grant No. N9101070), and the Fundamental Research Fund for the Central Universities of China (Grant No. 2012ZM0025).
    [1]

    Han M, Xu M L 2013 Acta Phys. Sin. 62 120510 (in Chinese) [韩敏, 许美玲 2013 物理学报 62 120510]

    [2]

    Niu H, Zhang G S 2013 Acta Phys. Sin. 62 130502 (in Chinese) [牛弘, 张国山 2013 物理学报 62 130502]

    [3]

    Feng J C 2012 Chaotic Signals and Information Processing (Beijing: Tsinghua Univ. Press)pp 32–35 (in Chinese) [冯久超 2012 混沌信号与信息处理 (清华大学出版社)第32–35页]

    [4]

    Li R H, Chen W S 2013 Chin. Phys. B 22 040503

    [5]

    Hossein G, Amir H, Azita A 2013 Chin. Phys. B 22 010503

    [6]

    Constantine W L B, Reinhall P G 2001 Int. J. Bifurcation Chaos 11 483

    [7]

    Han M, Liu Y H, Xi J H, Guo W 2007 IEEE Signal Process. Lett. 14 62

    [8]

    Gao J B, Sultan H, Hu J, Tung W W 2010 IEEE Signal Process. Lett. 17 237

    [9]

    Tung W W, Gao J B, Hu J, Yang L 2011 Phys. Rev. E 83 046210

    [10]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 050201 (in Chinese) [王文波, 张晓东, 汪祥莉 2013 物理学报 62 050201]

    [11]

    Cawley R, Hsu G H 1992 Phys. Rev. A 46 3057

    [12]

    Wang F P, Wang Z J, Guo J B 2002 Acta Phys. Sin. 51 474 (in Chinese) [汪芙平, 王赞基, 郭静波 2002 物理学报 51 474]

    [13]

    Feng J C 2005 Chinese Phys. Lett. 22 1851

    [14]

    Feng J C, Tse C K 2001 Phys. Rev. E 63 026202

    [15]

    Wu Y, Hu D, Wu M, Hu X 2005 IEEE Signal Process. Lett. 12 357

    [16]

    Arasaratnam I, Haykin S, Hurd T R 2010 IEEE Tran. Signal Process. 58 4977

    [17]

    Wang S Y, Long Z J, Wang J, Guo J 2011 2011 4th International Congress on Image and Signal Processing Shanghai Oct.15–17, 2011 p2303

    [18]

    Gerald C F, Wheatley P O 2004 Applied Numerical Analysis, seventh edition (New York: Pearson Addition Wesley) pp 266–270

    [19]

    Johnson M T, Povinelli R J 2005 Physica D 201 306

    [20]

    Takens F 1981 Lecture Notes in Mathematics (Berlin: Springer) pp 366–381

    [21]

    Wu K L, Yang M S 2002 Pattern Recognition 35 2267

    [22]

    Phatak S C, Rao S S 1995 Phys. Rev. E 51 3670

    [23]

    Gallas J A C 1993 Phys. Rev. Lett. 70 2714

    [24]

    Rosenstein M T, Collins J J, De L, Carlo J 1993 Physica D: Nonlinear Phenomena 65 117

  • [1]

    Han M, Xu M L 2013 Acta Phys. Sin. 62 120510 (in Chinese) [韩敏, 许美玲 2013 物理学报 62 120510]

    [2]

    Niu H, Zhang G S 2013 Acta Phys. Sin. 62 130502 (in Chinese) [牛弘, 张国山 2013 物理学报 62 130502]

    [3]

    Feng J C 2012 Chaotic Signals and Information Processing (Beijing: Tsinghua Univ. Press)pp 32–35 (in Chinese) [冯久超 2012 混沌信号与信息处理 (清华大学出版社)第32–35页]

    [4]

    Li R H, Chen W S 2013 Chin. Phys. B 22 040503

    [5]

    Hossein G, Amir H, Azita A 2013 Chin. Phys. B 22 010503

    [6]

    Constantine W L B, Reinhall P G 2001 Int. J. Bifurcation Chaos 11 483

    [7]

    Han M, Liu Y H, Xi J H, Guo W 2007 IEEE Signal Process. Lett. 14 62

    [8]

    Gao J B, Sultan H, Hu J, Tung W W 2010 IEEE Signal Process. Lett. 17 237

    [9]

    Tung W W, Gao J B, Hu J, Yang L 2011 Phys. Rev. E 83 046210

    [10]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 050201 (in Chinese) [王文波, 张晓东, 汪祥莉 2013 物理学报 62 050201]

    [11]

    Cawley R, Hsu G H 1992 Phys. Rev. A 46 3057

    [12]

    Wang F P, Wang Z J, Guo J B 2002 Acta Phys. Sin. 51 474 (in Chinese) [汪芙平, 王赞基, 郭静波 2002 物理学报 51 474]

    [13]

    Feng J C 2005 Chinese Phys. Lett. 22 1851

    [14]

    Feng J C, Tse C K 2001 Phys. Rev. E 63 026202

    [15]

    Wu Y, Hu D, Wu M, Hu X 2005 IEEE Signal Process. Lett. 12 357

    [16]

    Arasaratnam I, Haykin S, Hurd T R 2010 IEEE Tran. Signal Process. 58 4977

    [17]

    Wang S Y, Long Z J, Wang J, Guo J 2011 2011 4th International Congress on Image and Signal Processing Shanghai Oct.15–17, 2011 p2303

    [18]

    Gerald C F, Wheatley P O 2004 Applied Numerical Analysis, seventh edition (New York: Pearson Addition Wesley) pp 266–270

    [19]

    Johnson M T, Povinelli R J 2005 Physica D 201 306

    [20]

    Takens F 1981 Lecture Notes in Mathematics (Berlin: Springer) pp 366–381

    [21]

    Wu K L, Yang M S 2002 Pattern Recognition 35 2267

    [22]

    Phatak S C, Rao S S 1995 Phys. Rev. E 51 3670

    [23]

    Gallas J A C 1993 Phys. Rev. Lett. 70 2714

    [24]

    Rosenstein M T, Collins J J, De L, Carlo J 1993 Physica D: Nonlinear Phenomena 65 117

  • [1] 施岳, 欧攀, 郑明, 邰含旭, 王玉红, 段若楠, 吴坚. 基于轻量残差复合增强收敛神经网络的粒子场计算层析成像伪影噪声抑制. 物理学报, 2024, 73(10): 104202. doi: 10.7498/aps.73.20231902
    [2] 陈越, 刘雄英, 吴中堂, 范艺, 任子良, 冯久超. 受污染混沌信号的协同滤波降噪. 物理学报, 2017, 66(21): 210501. doi: 10.7498/aps.66.210501
    [3] 李爽, 李倩, 李佼瑞. Duffing系统随机相位抑制混沌与随机共振并存现象的机理研究. 物理学报, 2015, 64(10): 100501. doi: 10.7498/aps.64.100501
    [4] 陈越, 吕善翔, 王梦蛟, 冯久超. 一种基于人工蜂群算法的混沌信号盲分离方法. 物理学报, 2015, 64(9): 090501. doi: 10.7498/aps.64.090501
    [5] 李睿, 张广军, 姚宏, 朱涛, 张志浩. 参数不确定的分数阶混沌系统广义错位延时投影同步. 物理学报, 2014, 63(23): 230501. doi: 10.7498/aps.63.230501
    [6] 行鸿彦, 朱清清, 徐伟. 一种混沌海杂波背景下的微弱信号检测方法. 物理学报, 2014, 63(10): 100505. doi: 10.7498/aps.63.100505
    [7] 王春华, 胡燕, 余飞, 徐浩. 一类混沌系统同步时间可控的自适应投影同步. 物理学报, 2013, 62(11): 110509. doi: 10.7498/aps.62.110509
    [8] 刘明, 张树林, 李华, 邱阳, 曾佳, 张国峰, 王永良, 孔祥燕, 谢晓明. 一种应用于心磁噪声抑制的选择性平均方法研究. 物理学报, 2013, 62(9): 098501. doi: 10.7498/aps.62.098501
    [9] 行鸿彦, 程艳燕, 徐伟. 基于广义窗函数和最小二乘支持向量机的混沌背景下微弱信号检测. 物理学报, 2012, 61(10): 100506. doi: 10.7498/aps.61.100506
    [10] 陈帝伊, 柳烨, 马孝义. 基于径向基函数神经网络的混沌时间序列相空间重构双参数联合估计. 物理学报, 2012, 61(10): 100501. doi: 10.7498/aps.61.100501
    [11] 李鹤, 杨周, 张义民, 闻邦椿. 基于径向基神经网络预测的混沌时间序列嵌入维数估计方法. 物理学报, 2011, 60(7): 070512. doi: 10.7498/aps.60.070512
    [12] 张春涛, 马千里, 彭宏, 姜友谊. 基于条件熵扩维的多变量混沌时间序列相空间重构. 物理学报, 2011, 60(2): 020508. doi: 10.7498/aps.60.020508
    [13] 谭平安, 张波, 丘东元. 晶闸管混沌行为的延迟反馈控制与尖峰电流抑制. 物理学报, 2010, 59(8): 5299-5306. doi: 10.7498/aps.59.5299
    [14] 王国光, 王丹, 何丽桥. 混沌中信号的投影滤波. 物理学报, 2010, 59(5): 3049-3056. doi: 10.7498/aps.59.3049
    [15] 戎海武, 王向东, 徐 伟, 方 同. 多频谐和与噪声作用下Flickering振子的安全盆侵蚀与混沌. 物理学报, 2008, 57(3): 1506-1513. doi: 10.7498/aps.57.1506
    [16] 丛 蕊, 刘树林, 马 锐. 基于数据融合的多变量相空间重构方法. 物理学报, 2008, 57(12): 7487-7493. doi: 10.7498/aps.57.7487
    [17] 戎海武, 王向东, 徐 伟, 方 同. 谐和与噪声联合作用下Duffing振子的安全盆分叉与混沌. 物理学报, 2007, 56(4): 2005-2011. doi: 10.7498/aps.56.2005
    [18] 肖方红, 阎桂荣, 韩宇航. 混沌时序相空间重构参数确定的信息论方法. 物理学报, 2005, 54(2): 550-556. doi: 10.7498/aps.54.550
    [19] 游荣义, 陈 忠, 徐慎初, 吴伯僖. 基于小波变换的混沌信号相空间重构研究. 物理学报, 2004, 53(9): 2882-2888. doi: 10.7498/aps.53.2882
    [20] 杨绍清, 贾传荧. 两种实用的相空间重构方法. 物理学报, 2002, 51(11): 2452-2458. doi: 10.7498/aps.51.2452
计量
  • 文章访问数:  5190
  • PDF下载量:  602
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-08
  • 修回日期:  2013-08-27
  • 刊出日期:  2013-12-05

/

返回文章
返回