搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压缩增强的强度噪声抑制机理

张若涛 张文慧

引用本文:
Citation:

压缩增强的强度噪声抑制机理

张若涛, 张文慧

Mechanism of suppressing noise intensity of squeezed state enhancement

ZHANG Ruotao, ZHANG Wenhui
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 激光光源的噪声直接影响精密测量系统的精度和灵敏度, 特别是在引力波探测和生物成像等高精度应用中. 尽管经典反馈控制技术能有效地抑制强度噪声, 但其降噪水平受到经典噪声极限的限制. 本研究提出一种结合量子压缩光与经典反馈控制技术的新方法, 旨在进一步降低系统中的强度噪声, 突破经典反馈控制技术的抑噪瓶颈. 通过引入正交振幅压缩态光场, 在理论上建立了压缩光辅助的反馈控制系统, 理论分析了反馈增益和压缩度对噪声抑制的影响, 并与经典方案进行对比. 理论分析结果表明, 压缩光的引入显著地提高了噪声抑制水平, 接近散粒噪声极限, 从而大幅提升系统的灵敏度. 该方法为在不增加激光功率的情况下实现更低噪声水平提供了新的量子控制手段, 对精密测量技术的发展具有重要意义.
    This research focuses on advanced noise suppression technologies for high-precision measurement systems, particularly addressing the limitations of classical noise reducing approaches. The noise level of laser sources is a crucial factor that directly affects the measurement sensitivity in applications such as gravitational wave detection and biomedical imaging. Classical feedback control technologies are effective but often encounter a bottleneck resulting from the classical noise suppression limits. To cope with these challenges, a novel method integrating quantum squeezed light with classical feedback control systems to reduce intensity noise is proposed in this work. By employing an amplitude-squeezed light field, a quantum-enhanced feedback control model is developed, thereby theoretically examining the influence of both the feedback loop gain and the degree of squeezing on the noise suppression performance. The results show that the injection of squeezed light significantly reduces the intensity noise, approaching the shot noise limit (SNL), thereby improving the system sensitivity beyond the classical noise reduction boundaries. Specifically, –10 dB squeezed state injection into the feedback system yields an additional noise suppression of approximately 8.97 dB, exceeding what is achievable using classical feedback alone. This demonstrates that the potential of the proposed method can enhance measurement precision close to the quantum noise limits without increasing the laser power. The analysis highlights the asymmetric noise suppression effects between the inner feedback loop and outer feedback loop. Although the outer loop benefits significantly from the squeezed light injection and achieves noise levels that are unattainable by classical feedback methods, the inner loop shows relatively minor improvements. This asymmetry is attributed to the inherent characteristics of quantum squeezing and the limitations of the feedback loop design. Further investigation into the individual noise components reveals that the primary contributors to the intensity noise include input noise, photodetector noise, and beam splitter-induced vacuum fluctuations. The injection of squeezed light effectively mitigates these vacuum fluctuations, which are typically a major noise source in high-precision laser systems. Theoretical research results show that the use of squeezed light in feedback control systems can effectively enhance noise suppression, equivalent to a tenfold increase in detected optical power, without the physical drawbacks of increasing laser power such as thermal noise. In conclusion, this study provides a theoretical validation of combining quantum squeezed states with classical feedback control to exceed classical noise suppression limits. The integration of a –10 dB squeezed state demonstrates a significant noise reduction, showing that this hybrid approach could revolutionize noise management in precision measurement applications. The results pave the way for further exploring quantum-enhanced control technologies in fields such as gravitational wave detection, quantum communication, and advanced optical sensing, providing a pathway for improving sensitivity and noise suppression without increasing additional power requirements.
  • 图 1  反馈控制回路原理图

    Fig. 1.  Schematic diagram of feedback control loop.

    图 2  在有无压缩注入时, 外环与内环的强度噪声方差

    Fig. 2.  The amplitude noise variance between the outer and inner loops with and without squeezed state injection.

    图 3  有无压缩注入时, 内外环光场各个分量的噪声方差

    Fig. 3.  Noise variance of each component of the inner and outer ring optical fields with and without squeezed state injection.

    图 4  不同增益下压缩度与外环噪声方差的关系

    Fig. 4.  Relationship between the degree of squeezing and the variance of outer loop noise at different feedback gains.

  • [1]

    The LIGO Scientific Collaboration 2015 Classical Quantum Gravity 32 074001Google Scholar

    [2]

    AcerneseF, Agathos M, Agatsuma K, Aisa D, Allemandou N, Allocca A, Meidam J 2014 Classical Quantum Gravity 32 024001

    [3]

    LIGO Scientific and Virgo Collaborations 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [4]

    LIGO Scientific and Virgo Collaborations 2017 Phys. Rev. Lett. 119 141101Google Scholar

    [5]

    Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A, Bowen W P 2013 Nat. Photonics 7 229Google Scholar

    [6]

    Casacio C A, Madsen L S, Terrasson A, Waleed M, Barnscheidt K, Hage B, Bowen W P 2021 Nature 594 201Google Scholar

    [7]

    Brito R, Ghosh S, Barausse E, Berti E, Cardoso V, Dvorkin I, Klein A, Pani P 2017 Phys. Rev. D 96 064050Google Scholar

    [8]

    Armano M, Audley H, Baird J, Binetruy P, Born M, Bortoluzzi D, Zweifel P 2018 Phys. Rev. Lett. 120 061101Google Scholar

    [9]

    Kaufer S, Kasprzack M, Frolov V, Willke B 2017 Classical Quantum Gravity 34 145001Google Scholar

    [10]

    Seifert F, Kwee P, Heurs M, Willke B, Danzmann K 2006 Opt. Lett. 31 2000Google Scholar

    [11]

    Kwee P, Willke B, Danzmann K 2009 Opt. Lett. 34 2912Google Scholar

    [12]

    Junker J, Oppermann P, Willke B 2017 Opt. Lett. 42 755Google Scholar

    [13]

    王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉 2020 物理学报 69 234204Google Scholar

    Wang J P, Zhang W H, Li R X, Tian L, Wang Y J, Zheng Y H 2020 Acta Phys. Sin. 69 234204Google Scholar

    [14]

    王雅君, 王俊萍, 张文慧, 李瑞鑫, 田龙, 郑耀辉 2021 物理学报 70 204202Google Scholar

    Wang Y J, Wang J P, Zhang W H, Li R X, Tian L, Zheng Y H 2021 Acta Phys. Sin. 70 204202Google Scholar

    [15]

    Yamamoto Y, Haus H A 1986 Rev. Mod. Phys. 58 1001Google Scholar

    [16]

    Xiao M, Wu L A, Kimble H J 1987 Phys. Rev. Lett. 59 27

    [17]

    Zhao J, Guiraud G, Pierre C, Floissat F, Casanova A, Hreibi A, Chaibi W, Traynoer N, Boullet J, Santarelli G 2018 Appl. Phys. B 124 1

    [18]

    Paschotta R, Fiedler K, Kurz P, Mlynek J 1995 Appl. Phys. B 60 241

    [19]

    Haus H A, Yamamoto Y. 1984 Phys. Rev. A 29 1268

    [20]

    Zhang J, Ma H L, Xie C D, Peng K C 2003 Appl. Opt. 42 1068Google Scholar

    [21]

    王在渊, 王洁浩, 李宇航, 柳强 2023 物理学报 72 054205Google Scholar

    Wang Z Y, Wang J H, Li Y H, Liu Q 2023 Acta Phys. Sin. 72 054205Google Scholar

    [22]

    王雅君, 高丽, 张晓莉, 郑耀辉 2020 红外与激光工程 49 20201073Google Scholar

    Wang Y J, Gao L, Zhang X L, Zheng Y H 2020 Infrared Laser Eng. 49 20201073Google Scholar

    [23]

    Kwee P, Willke B, Danzmann K 2008 Opt. Lett. 33 1509Google Scholar

    [24]

    Kwee P, Willke B, Danzmann K 2011 Opt. Lett. 36 3563Google Scholar

    [25]

    Kaufer S, Willke B 2019 Opt. Lett. 44 1916Google Scholar

    [26]

    姚德民, 郭光灿 1988 物理学报 37 463Google Scholar

    Yao D M, Guo G C 1988 Acta Phys. Sin. 37 463Google Scholar

    [27]

    Vahlbruch H, Wilken D, Mehmet M, Willke B 2018 Phys. Rev. Lett. 121 173601Google Scholar

    [28]

    Eberle T, Steinlechner S, Bauchrowitz J, Händchen V, Vahlbruch H, Mehmet M, Müller-Ebhardt H, Schnabel R 2010 Phys. Rev. Lett. 104 251102Google Scholar

    [29]

    Liu F, Zhou Y Y, Yu J, Guo J L, Wu Y, Xiao S X, Wei D, Zhang Y, Jia X J, Xiao M 2017 Appl. Phys. Lett. 110 021106Google Scholar

    [30]

    Wu L A, Kimble H J, Hall J L, Wu H F 1986 Phys. Rev. Lett. 57 2520Google Scholar

    [31]

    Schneider K, Lang M, Mlynek J, Schiller S 1998 Opt. Express 2 59Google Scholar

    [32]

    Vahlbruch H, Chelkowski S, Danzmann K, Schnabel R 2007 New J. Phys. 9 371Google Scholar

    [33]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [34]

    Kleybolte L, Gewecke P, Sawadsky A, Korobko M, Schnabel R 2020 Phys. Rev. Lett. 125 213601Google Scholar

    [35]

    Meylahn F, Willke B, Vahlbruch H 2022 Phys. Rev. Lett. 129 121103Google Scholar

    [36]

    Yang W H, Jin X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 24262Google Scholar

    [37]

    Zhang W H, Wang J R, Zheng Y H, Wang Y J, Peng K C 2019 Appl. Phys. Lett. 115 171105Google Scholar

    [38]

    潘建伟 2024 物理学报 73 010301Google Scholar

    Pan J W 2024 Acta Phys. Sin 73 010301Google Scholar

    [39]

    Clerk A A, Devoret M H, Girvin S M, Marquardt F, Schoelkopf R. J 2010 Rev. Mod. Phys. 82 1155Google Scholar

    [40]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

  • [1] 施岳, 欧攀, 郑明, 邰含旭, 王玉红, 段若楠, 吴坚. 基于轻量残差复合增强收敛神经网络的粒子场计算层析成像伪影噪声抑制. 物理学报, doi: 10.7498/aps.73.20231902
    [2] 屠秉晟. 少电子离子束缚态电子g因子精密测量. 物理学报, doi: 10.7498/aps.73.20240683
    [3] 蔚娟, 张岩, 吴银花, 杨文海, 闫智辉, 贾晓军. 双模压缩态量子相干性演化的实验研究. 物理学报, doi: 10.7498/aps.72.20221923
    [4] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息. 物理学报, doi: 10.7498/aps.72.20231179
    [5] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, doi: 10.7498/aps.71.20211663
    [6] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, doi: 10.7498/aps.70.20211663
    [7] 赵天择, 杨苏辉, 李坤, 高彦泽, 王欣, 张金英, 李卓, 赵一鸣, 刘宇哲. 频域反射法光纤延时精密测量. 物理学报, doi: 10.7498/aps.70.20201075
    [8] 翟泽辉, 郝温静, 刘建丽, 段西亚. 用于光学薛定谔猫态制备的滤波设计与滤波腔腔长测量. 物理学报, doi: 10.7498/aps.69.20200589
    [9] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, doi: 10.7498/aps.67.20181084
    [10] 范黎明, 吕明涛, 黄仁忠, 高天附, 郑志刚. 反馈控制棘轮的定向输运效率研究. 物理学报, doi: 10.7498/aps.66.010501
    [11] 曾喆昭. 不确定混沌系统的径向基函数神经网络反馈补偿控制. 物理学报, doi: 10.7498/aps.62.030504
    [12] 王金涛, 刘子勇. 基于静力悬浮原理的单晶硅球间微量密度差异精密测量方法研究. 物理学报, doi: 10.7498/aps.62.037702
    [13] 刘明, 张树林, 李华, 邱阳, 曾佳, 张国峰, 王永良, 孔祥燕, 谢晓明. 一种应用于心磁噪声抑制的选择性平均方法研究. 物理学报, doi: 10.7498/aps.62.098501
    [14] 史正平. 简易混沌振荡器的混沌特性及其反馈控制电路的设计. 物理学报, doi: 10.7498/aps.59.5940
    [15] 林 敏, 黄咏梅, 方利民. 双稳系统随机共振的反馈控制. 物理学报, doi: 10.7498/aps.57.2041
    [16] 张婉娟, 王治国, 谢双媛, 羊亚平. 频率变化的压缩态光场与原子的相互作用. 物理学报, doi: 10.7498/aps.56.2168
    [17] 都 琳, 徐 伟, 贾飞蕾, 李 爽. 基于低通滤波函数实现陀螺系统的反馈控制. 物理学报, doi: 10.7498/aps.56.3813
    [18] 陈 漩, 高自友, 赵小梅, 贾 斌. 反馈控制双车道跟驰模型研究. 物理学报, doi: 10.7498/aps.56.2024
    [19] 刘素华, 唐驾时. Langford系统Hopf分叉的线性反馈控制. 物理学报, doi: 10.7498/aps.56.3145
    [20] 金 硕, 解炳昊. 外磁场中海森伯反铁磁模型的代数结构和压缩态解. 物理学报, doi: 10.7498/aps.55.3880
计量
  • 文章访问数:  341
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-03
  • 修回日期:  2025-03-24
  • 上网日期:  2025-04-02

/

返回文章
返回