搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机共振动力学机理及其微弱信号检测方法的研究

范剑 赵文礼 张明路 檀润华 王万强

引用本文:
Citation:

随机共振动力学机理及其微弱信号检测方法的研究

范剑, 赵文礼, 张明路, 檀润华, 王万强

Nonlinear dynamics of stochastic resonance and its application in the method of weak signal detection

Fan Jian, Zhao Wen-Li, Zhang Ming-Lu, Tan Run-Hua, Wang Wan-Qiang
PDF
导出引用
  • 目前已有的随机共振理论对于随机共振系统的非线性动力学行为及其发生机理阐释得不够具体和明晰,本文从分析一阶非线性Duffing方程的动力学特性入手,推导得到非自治Duffing方程的吸引子曲线,基于该曲线和输入信号之间的映射关系分析了系统输出的动力学行为,并由此进一步定性分析了随机共振现象发生的动力学机理;研究表明:作用于系统的内禀信号能推动系统动点沿吸引子曲线移动,它对系统的输出起内在的和本质的作用,而噪声在一定条件下能够诱发系统产生跃迁行为;文章最后利用该动力学机理对已有的调参数和调阻尼等基于随机共振的微弱信号检测方法作了统一和延拓.
    According to the exited stochastic resonance theory, we cannot obtain the dynamic behavior of a stochastic resonance (SR) system intuitively. In order to reveal the dynamic mechanism of SR, a kind of first-order Duffing equation attractor is analyzed at first, and then the property of nonlinear Duffing equation is studied, based on which the nonautonomous Duffing equation attractor curve is deduced. The output of SR system can be obtained by mapping the input signal on the attractor curve, and the dynamic mechanism of SR is explained by using the mapping method. Analysis of the result indicates that the intrinsic signal can push the system to move along the attractor curve, and the noise can evoke a transition response of the system under the given conditions. Some exited SR weak signal detection methods, such as the parameter-adjustment and damping-adjustment are extended by the proposed dynamic mechanism.
    • 基金项目: 国家自然科学基金(批准号:50875070)和浙江省教育厅科研项目(批准号:Y201326915)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50875070), the Scientific Research Fund of Zhejiang Provincial Education Department and the Technology Research of China (Grant No. Y201326915).
    [1]

    Benzi R, Parisi G, Sutera A, Vulpiana A 1981 J. Phys. A: Math. Gen. 14 453

    [2]

    Hu G, Qing G R, Gong D C 1991 Phys. Rev. A 44 6414

    [3]

    McNamara B, Wiesenfeld K 1989 Phys. Rev. A 39 4854

    [4]

    Dykman M I 1990 Phys. Rev. Lett. 65 2606

    [5]

    Gammaitoni L, Marchesoni F 1989 Phys. Rev. Lett. 62 349

    [6]

    Dykman M I, Haken H, Hu G 1993 Phys. Lett. A 180 332

    [7]

    Dykman M I, Luchinsky D G, Mannella R 1994 Phys. Lett. A 193 61

    [8]

    Zhou T, Moss F 1990 Phys. Rev. A 41 4255

    [9]

    Choi M H, Fox R F, Jung P 1998 Phys. Rev. E 57 6335

    [10]

    Giacomelli G, Marin F, Rabbiosi I 1999 Phys. Rev. Lett. 82 675

    [11]

    Jung P, P Hänggi 1989 Euro. phys. Lett. 8 505

    [12]

    Hu G, Nicolis G, Nicolis C 1990 Phys. Rev. A 42 2030

    [13]

    Lu Z H, Lin J H, Hu G 1993 Acta Phys. Sin. 42 1556 (in Chinese)[卢志恒, 林建恒, 胡岗 1993 物理学报 42 1556]

    [14]

    Li X L, Leng Y G, Fan S B, Shi P 2011 J. Vibration and Shock. 30 78 (in Chinese) [李晓龙, 冷永刚, 范胜波, 石鹏 2011 振动与冲击 30 78]

    [15]

    Peng H, Zhong S C, Ma H 2013 Acta Phys. Sin. 62 080501 (in Chinese)[彭皓, 钟苏川, 马洪 2013 物理学报 62 080501]

    [16]

    Guo F, Luo X D, Li S F, Zhou Y R 2010 Chin. Phys. B 19 080502

    [17]

    Lin M, Fang L M, Zheng Y J 2009 Chin. Phys. B 18 1725

    [18]

    Li J L, Zeng L Z 2011 Chin. Phys. B 20 010503

    [19]

    Zhang L Y, Jin G X, Cao L, Wang Z Y 2012 Chin. Phys. B 21 120502

    [20]

    Jiang S Q, Hou M J, Jia C H, He J R, Gu T X 2009 Chin. Phys. B 18 2667

    [21]

    Leng Y G, Wang T Y, Guo Y 2007 Acta Phys. Sin. 56 30 (in Chinese)[冷永刚, 王太勇, 郭焱 2007 物理学报 56 30]

    [22]

    Leng Y G 2011 Acta Phys. Sin. 60 020503 (in Chinese)[冷永刚 2011 物理学报 60 020503]

    [23]

    Wang G F, Ouyang S, Zhang H R 2010 J. Guilin Univ. Elec. Tec. 30 396 (in Chinese) [王国富, 欧阳缮, 张海如 2010 桂林电子科技大学学报 30 396]

    [24]

    Qu Y, Wang F Z, Sun J J 2011 Sci. sin. 41 1190 (in Chinese) [曲媛, 王辅忠, 孙静静 2011 中国科学 41 1190]

    [25]

    Zhao W L, Wang J, Wang L Z 2013 Chaos 23 033117

    [26]

    Fan Y Y, Li L P, Dang R R 2013 Chin. J. Scie. Ins. 34 566 (in Chinese) [樊养余, 李利品, 党瑞荣 2013 仪器仪表学报 34 566]

    [27]

    Zhao W L, Liu J, Yin Y P 2011 Chin. J. Scie. Ins. 32 721 (in Chinese) [赵文礼, 刘进, 殷园平 2011 仪器仪表学报 32 721]

    [28]

    Leng Y G, Wang T Y 2003 Acta Phys. Sin. 52 2431 (in Chinese)[冷永刚, 王太勇 2003 物理学报 52 2431]

    [29]

    Wang L Z, Zhao W L, Chen X 2012 Acta Phys. Sin. 61 160501 (in Chinese)[王林泽, 赵文礼, 陈旋 2012 物理学报 61 160501]

  • [1]

    Benzi R, Parisi G, Sutera A, Vulpiana A 1981 J. Phys. A: Math. Gen. 14 453

    [2]

    Hu G, Qing G R, Gong D C 1991 Phys. Rev. A 44 6414

    [3]

    McNamara B, Wiesenfeld K 1989 Phys. Rev. A 39 4854

    [4]

    Dykman M I 1990 Phys. Rev. Lett. 65 2606

    [5]

    Gammaitoni L, Marchesoni F 1989 Phys. Rev. Lett. 62 349

    [6]

    Dykman M I, Haken H, Hu G 1993 Phys. Lett. A 180 332

    [7]

    Dykman M I, Luchinsky D G, Mannella R 1994 Phys. Lett. A 193 61

    [8]

    Zhou T, Moss F 1990 Phys. Rev. A 41 4255

    [9]

    Choi M H, Fox R F, Jung P 1998 Phys. Rev. E 57 6335

    [10]

    Giacomelli G, Marin F, Rabbiosi I 1999 Phys. Rev. Lett. 82 675

    [11]

    Jung P, P Hänggi 1989 Euro. phys. Lett. 8 505

    [12]

    Hu G, Nicolis G, Nicolis C 1990 Phys. Rev. A 42 2030

    [13]

    Lu Z H, Lin J H, Hu G 1993 Acta Phys. Sin. 42 1556 (in Chinese)[卢志恒, 林建恒, 胡岗 1993 物理学报 42 1556]

    [14]

    Li X L, Leng Y G, Fan S B, Shi P 2011 J. Vibration and Shock. 30 78 (in Chinese) [李晓龙, 冷永刚, 范胜波, 石鹏 2011 振动与冲击 30 78]

    [15]

    Peng H, Zhong S C, Ma H 2013 Acta Phys. Sin. 62 080501 (in Chinese)[彭皓, 钟苏川, 马洪 2013 物理学报 62 080501]

    [16]

    Guo F, Luo X D, Li S F, Zhou Y R 2010 Chin. Phys. B 19 080502

    [17]

    Lin M, Fang L M, Zheng Y J 2009 Chin. Phys. B 18 1725

    [18]

    Li J L, Zeng L Z 2011 Chin. Phys. B 20 010503

    [19]

    Zhang L Y, Jin G X, Cao L, Wang Z Y 2012 Chin. Phys. B 21 120502

    [20]

    Jiang S Q, Hou M J, Jia C H, He J R, Gu T X 2009 Chin. Phys. B 18 2667

    [21]

    Leng Y G, Wang T Y, Guo Y 2007 Acta Phys. Sin. 56 30 (in Chinese)[冷永刚, 王太勇, 郭焱 2007 物理学报 56 30]

    [22]

    Leng Y G 2011 Acta Phys. Sin. 60 020503 (in Chinese)[冷永刚 2011 物理学报 60 020503]

    [23]

    Wang G F, Ouyang S, Zhang H R 2010 J. Guilin Univ. Elec. Tec. 30 396 (in Chinese) [王国富, 欧阳缮, 张海如 2010 桂林电子科技大学学报 30 396]

    [24]

    Qu Y, Wang F Z, Sun J J 2011 Sci. sin. 41 1190 (in Chinese) [曲媛, 王辅忠, 孙静静 2011 中国科学 41 1190]

    [25]

    Zhao W L, Wang J, Wang L Z 2013 Chaos 23 033117

    [26]

    Fan Y Y, Li L P, Dang R R 2013 Chin. J. Scie. Ins. 34 566 (in Chinese) [樊养余, 李利品, 党瑞荣 2013 仪器仪表学报 34 566]

    [27]

    Zhao W L, Liu J, Yin Y P 2011 Chin. J. Scie. Ins. 32 721 (in Chinese) [赵文礼, 刘进, 殷园平 2011 仪器仪表学报 32 721]

    [28]

    Leng Y G, Wang T Y 2003 Acta Phys. Sin. 52 2431 (in Chinese)[冷永刚, 王太勇 2003 物理学报 52 2431]

    [29]

    Wang L Z, Zhao W L, Chen X 2012 Acta Phys. Sin. 61 160501 (in Chinese)[王林泽, 赵文礼, 陈旋 2012 物理学报 61 160501]

  • [1] 贾美美, 蒋浩刚, 李文静. 新Chua多涡卷混沌吸引子的产生及应用. 物理学报, 2019, 68(13): 130503. doi: 10.7498/aps.68.20182183
    [2] 刘广凯, 全厚德, 康艳梅, 孙慧贤, 崔佩璋, 韩月明. 一种随机共振增强正弦信号的二次多项式接收方法. 物理学报, 2019, 68(21): 210501. doi: 10.7498/aps.68.20190952
    [3] 彭皓, 钟苏川, 屠浙, 马洪. 线性调频信号激励过阻尼双稳系统的随机共振现象研究. 物理学报, 2013, 62(8): 080501. doi: 10.7498/aps.62.080501
    [4] 焦尚彬, 任超, 黄伟超, 梁炎明. 稳定噪声环境下多频微弱信号检测的参数诱导随机共振现象. 物理学报, 2013, 62(21): 210501. doi: 10.7498/aps.62.210501
    [5] 张晓燕, 徐伟, 周丙常. 周期矩形信号作用下时滞非对称单稳系统的随机共振. 物理学报, 2012, 61(3): 030501. doi: 10.7498/aps.61.030501
    [6] 张莉, 元秀华, 武力. 脉冲信号被噪声调制的单模激光随机共振. 物理学报, 2012, 61(11): 110501. doi: 10.7498/aps.61.110501
    [7] 冷永刚, 赖志慧, 范胜波, 高毓璣. 二维Duffing振子的大参数随机共振及微弱信号检测研究. 物理学报, 2012, 61(23): 230502. doi: 10.7498/aps.61.230502
    [8] 高仕龙, 钟苏川, 韦鹍, 马洪. 基于混沌和随机共振的微弱信号检测. 物理学报, 2012, 61(18): 180501. doi: 10.7498/aps.61.180501
    [9] 王林泽, 赵文礼, 陈旋. 基于随机共振原理的分段线性模型的理论分析与实验研究. 物理学报, 2012, 61(16): 160501. doi: 10.7498/aps.61.160501
    [10] 陆志新, 曹力. 输入方波信号的过阻尼谐振子的随机共振. 物理学报, 2011, 60(11): 110501. doi: 10.7498/aps.60.110501
    [11] 朱光起, 丁珂, 张宇, 赵远. 基于随机共振进行弱信号探测的实验研究. 物理学报, 2010, 59(5): 3001-3006. doi: 10.7498/aps.59.3001
    [12] 宁丽娟, 徐伟. 信号调制下分段噪声驱动的线性系统的随机共振. 物理学报, 2009, 58(5): 2889-2894. doi: 10.7498/aps.58.2889
    [13] 张良英, 金国祥, 曹 力. 调频信号的单模激光线性模型随机共振. 物理学报, 2008, 57(8): 4706-4711. doi: 10.7498/aps.57.4706
    [14] 周丙常, 徐 伟. 周期混合信号和噪声联合激励下的非对称双稳系统的随机共振. 物理学报, 2007, 56(10): 5623-5628. doi: 10.7498/aps.56.5623
    [15] 林 敏, 黄咏梅. 调制与解调用于随机共振的微弱周期信号检测. 物理学报, 2006, 55(7): 3277-3282. doi: 10.7498/aps.55.3277
    [16] 徐 伟, 靳艳飞, 徐 猛, 李 伟. 偏置信号调制下色关联噪声驱动的线性系统的随机共振. 物理学报, 2005, 54(11): 5027-5033. doi: 10.7498/aps.54.5027
    [17] 靳艳飞, 徐 伟, 李 伟, 徐 猛. 具有周期信号调制噪声的线性模型的随机共振. 物理学报, 2005, 54(6): 2562-2567. doi: 10.7498/aps.54.2562
    [18] 韩立波, 曹 力, 吴大进, 王 俊. 信号直接调制下色关联噪声驱动的单模激光的随机共振. 物理学报, 2004, 53(7): 2127-2132. doi: 10.7498/aps.53.2127
    [19] 冷永刚, 王太勇. 二次采样用于随机共振从强噪声中提取弱信号的数值研究. 物理学报, 2003, 52(10): 2432-2437. doi: 10.7498/aps.52.2432
    [20] 祝恒江, 李 蓉, 温孝东. 利用随机共振在强噪声下提取信息信号. 物理学报, 2003, 52(10): 2404-2408. doi: 10.7498/aps.52.2404
计量
  • 文章访问数:  6767
  • PDF下载量:  686
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-11
  • 修回日期:  2014-03-14
  • 刊出日期:  2014-06-05

/

返回文章
返回