搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新Chua多涡卷混沌吸引子的产生及应用

贾美美 蒋浩刚 李文静

引用本文:
Citation:

新Chua多涡卷混沌吸引子的产生及应用

贾美美, 蒋浩刚, 李文静

Generation and application of novel Chua multi-scroll chaotic attractors

Jia Mei-Mei, Jiang Hao-Gang, Li Wen-Jing
PDF
HTML
导出引用
  • 本文采用对数函数序列构造了一个新Chua多涡卷混沌系统, 分析了该系统的非线性动力学行为, 主要包括对称性、不变性、平衡点、最大李雅普诺夫指数等. 然后, 设计递归反步控制器控制Chua多涡卷混沌系统中的混沌行为. 最后, 利用Chua多涡卷混沌系统检测了多频微弱周期信号. 结果表明, 对数函数序列与新Chua双涡卷混沌系统相结合能够产生丰富的Chua多涡卷混沌吸引子. 产生机制为指标2的鞍焦平衡点用于产生涡卷, 指标1的鞍焦平衡点用于连接涡卷. 递归反步控制器能够将Chua多涡卷混沌系统控制到不动点或给定的正弦函数. Chua多涡卷混沌系统与递归反步控制器相结合的新微弱信号检测方法能够检测出淹没在高斯噪声背景下多频微弱周期信号的各频率.
    Chaos has great potential applications in engineering fields, such as secure communication and digital encryption. Since the double-scroll Chua’s circuit was developed first by Chua, it has quickly become a paradigm to study the double-scroll chaotic attractors. Compared with the conventional double-scroll chaotic attractors, the multi-scroll chaotic attractors have complex structures and rich nonlinear dynamical behaviors. The multi-scroll chaotic attractors have been applied to various chaos-based information technologies, such as secure communication and chaotic cryptanalysis. Hence, the generation of the multi-scroll chaotic attractors has become a hot topic in research field of chaos at present. In this paper, a novel Chua multi-scroll chaotic system is constructed by using a logarithmic function series. The nonlinear dynamical behaviors of the novel Chua multi-scroll chaotic system are analyzed, including symmetry, invariance, equilibrium points, the largest Lyapunov exponent, etc. The existence of chaos is confirmed by theoretical analyses and numerical simulations. The results show that the rich Chua multi-scroll chaotic attractors can be generated by combining the logarithmic function series with the novel Chua double-scroll chaotic system. The generation mechanism of the Chua multi-scroll chaotic attractors is that the saddle-focus equilibrium points of index 2 are used to generate the scrolls, and the saddle-focus equilibrium points of index 1 are used to connect these scrolls. Then, three recursive back-stepping controllers are designed to control the chaotic behavior in the novel Chua multi-scroll chaotic system. The recursive back-stepping controllers can control the novel Chua multi-scroll chaotic system to a fixed point or a given sinusoidal function. Finally, a new method of detecting a weak signal embedded in the Gaussian noise is proposed on the basis of the novel Chua multi-scroll chaotic system and the recursive back-stepping controllers. The immunity of the novel Chua multi-scroll chaotic system to the Gaussian noise with the zero mean is analyzed by using the stochastic differential equation theory. The results show that the proposed new method of detecting the weak signal can detect the frequencies of the multi-frequency weak periodic signal embedded in the Gaussian noise. In addition, the novel Chua multi-scroll chaotic system has strong immunity to any Gaussian noise with the zero mean. The proposed method provides a new thought for detecting the weak signal.
      通信作者: 贾美美, meimeijia14@163.com
    • 基金项目: 内蒙古工业大学校基金(批准号: ZD201520)和内蒙古自治区自然科学基金(批准号: 2017BS0603)资助的课题.
      Corresponding author: Jia Mei-Mei, meimeijia14@163.com
    • Funds: Project supported by the Inner Mongolia University of Technology Foundation, China (Grant No. ZD201520) and the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 2017BS0603).
    [1]

    Chua L O, Komuro M, Matsumoto T 1986 IEEE T. Circuits 33 1072Google Scholar

    [2]

    Suykens J A K, Van de walle J 1993 IEEE T. Circuits-I 40 861Google Scholar

    [3]

    Lü J H, Chen G R, Yu X H, Leung H 2004 IEEE T. Circuits-I 51 2476Google Scholar

    [4]

    Lü J H, Han F L, Yu X H, Chen G R 2004 Automatica 40 1677Google Scholar

    [5]

    陈仕必, 曾以成, 徐茂林, 陈家胜 2011 物理学报 60 020507Google Scholar

    Chen S B, Zeng Y C, Xu M L, Chen J S 2011 Acta Phys. Sin. 60 020507Google Scholar

    [6]

    艾星星, 孙克辉, 贺少波 2014 物理学报 63 040503Google Scholar

    Ai X X, Sun K H, He S B 2014 Acta Phys. Sin. 63 040503Google Scholar

    [7]

    Hong Q H, Xie Q G, Xiao P 2017 Nonlinear Dyn. 87 1015Google Scholar

    [8]

    Zhang G T, Wang F Q 2018 Chin. Phys. B 27 018201Google Scholar

    [9]

    Xu F, Yu P 2010 J. Math. Anal. Appl. 362 252Google Scholar

    [10]

    Chen Z, Wen G L, Zhou H A, Chen J Y 2017 Optik 130 594Google Scholar

    [11]

    Wang C H, Luo X W, Wan Z 2014 Optik 125 6716Google Scholar

    [12]

    Lü J H, Murali K, Sinha S, Leung H, Aziz-Alaoui M A 2008 Phys. Lett. A 372 3234Google Scholar

    [13]

    Yuan F, Wang G Y, Wang X W 2016 Chaos 26 073107Google Scholar

    [14]

    Wang C H, Liu X M, Xia H 2017 Chaos 27 033114Google Scholar

    [15]

    Hu X Y, Liu C X, Liu L, Yao Y P, Zheng G C 2017 Chin. Phys. B 26 110502Google Scholar

    [16]

    Wang C H, Xia H, Zhou L 2017 Int. J. Bifurcat. Chaos 27 1750091Google Scholar

    [17]

    肖利全, 段书凯, 王丽丹 2018 物理学报 67 090502Google Scholar

    Xiao L Q, Duan S K, Wang L D 2018 Acta Phys. Sin. 67 090502Google Scholar

    [18]

    Wang G Y, Yuan F, Chen G R, Zhang Y 2018 Chaos 28 013125Google Scholar

    [19]

    Ott E, Grebogi C, Yorke J A 1990 Phys. Rev. Lett. 64 1196Google Scholar

    [20]

    Yang C H, Ge Z M, Chang C M, Li S Y 2010 Nonlinear Anal-real. 11 1977Google Scholar

    [21]

    Danaca M F, Fečkan M 2019 Commun. Nonlinear Sci. 74 1Google Scholar

    [22]

    Litak G, Syta A, Borowice M 2007 Chaos Soliton. Fract. 32 694Google Scholar

    [23]

    Gamal Mahmoud M, Ayman A A, Tarek M A, Emad E M 2017 Chaos Soliton. Fract. 104 680Google Scholar

    [24]

    Shen Y J, Wen S F, Yang S P, Guo S Q, Li L R 2018 Int. J. Nonlin. Mech. 98 173Google Scholar

    [25]

    Mfoumou G S, Kenmoé G D, Kofané T C 2019 Mech. Syst. Signal Pr. 119 399Google Scholar

    [26]

    Harb A, Zaher A, Zohdy M 2002 Proceedings of the American Control Conference Anchorage, Ak, USA, May 8-10, 2002 p2251

    [27]

    Laoye J A, Vincent U E, Kareem S O 2009 Chaos Soliton. Fract. 39 356Google Scholar

    [28]

    Njah A N, Sunday O D 2009 Chaos Soliton. Fract. 41 2371Google Scholar

    [29]

    Njah A N 2010 Nonlinear Dyn. 61 1Google Scholar

    [30]

    Birx D L, Pipenberg S J 1992 International Joint Conference on Neural Networks Baltimore, MD, USA, June 7-11, 1992 p881

    [31]

    徐艳春, 杨春玲 2010 哈尔滨工业大学学报 42 446Google Scholar

    Xu Y C, Yang C L 2010 Journal of Harbin Institute of Technology 42 446Google Scholar

    [32]

    Xu Y C, Yang C L, Qu X D 2010 Chin. Phys. B 19 030516Google Scholar

    [33]

    Li G Z, Zhang B 2017 IEEE T. Ind. Electron. 64 2255

    [34]

    Zhong G Q, Man K F, Chen G R 2002 Int. J. Bifurcat. Chaos 12 2907Google Scholar

    [35]

    Yu S M, Lü J H, Chen G R 2007 Int. J. Bifurcat. Chaos 17 1785Google Scholar

    [36]

    Christopher P S 1993 IEEE T. Circuits-I 40 675Google Scholar

    [37]

    Cafagna D, Grassi G 2003 Int. J. Bifurcat. Chaos 13 2889Google Scholar

    [38]

    李月, 杨宝俊, 石要武 2003 物理学报 52 526Google Scholar

    Li Y, Yang B J, Shi Y W 2003 Acta Phys. Sin. 52 526Google Scholar

    [39]

    钱勇, 黄成军, 陈陈, 江秀臣 2007 中国电机工程学报 27 89

    Qian Y, Huang C J, Chen C, Jiang X C 2007 Proceedings of the CSEE 27 89

  • 图 1  对数函数

    Fig. 1.  Logarithmic function.

    图 2  新Chua双涡卷混沌系统的电路图

    Fig. 2.  Circuit diagram of the novel Chua double-scroll chaotic system.

    图 3  $\left| {{v_{{C_1}}}} \right|$的电路图

    Fig. 3.  Circuit diagram of $\left| {{v_{{C_1}}}} \right|$.

    图 8  $g\left( {{v_{{C_1}}}} \right) = \log _2^{\frac{{{{\rm{e}}^{ - 4\left| {{v_{{C_1}}}} \right|}} + 1}}{2}} \cdot {\rm{sgn}} ( - {v_{{C_1}}})$的电路图

    Fig. 8.  Circuit diagram of $g\left( {{v_{{C_1}}}} \right) = \log _2^{\frac{{{{\rm{e}}^{ - 4\left| {{v_{{C_1}}}} \right|}} + 1}}{2}}\times$ $ {\rm{sgn}} ( - {v_{{C_1}}})$.

    图 4  ${{\rm{e}}^{4\left| {{v_{{C_1}}}} \right|}}$的电路图

    Fig. 4.  Circuit diagram of ${{\rm{e}}^{4\left| {{v_{{C_1}}}} \right|}}$.

    图 5  ${{\rm{e}}^{ - 4\left| {{v_{{C_1}}}} \right|}}$的电路图

    Fig. 5.  Circuit diagram of ${{\rm{e}}^{ - 4\left| {{v_{{C_1}}}} \right|}}$.

    图 6  $\log _2^{\frac{{{{\rm{e}}^{ - 4\left| {{v_{{C_1}}}} \right|}} + 1}}{2}}$的电路图

    Fig. 6.  Circuit diagram of $\log _2^{\frac{{{{\rm{e}}^{ - 4\left| {{v_{{C_1}}}} \right|}} + 1}}{2}}$.

    图 7  ${\rm{sgn}} \left( { - {v_{{C_1}}}} \right)$的电路图

    Fig. 7.  Circuit diagram of ${\rm{sgn}} \left( { - {v_{{C_1}}}} \right)$.

    图 9  系统[(20)式]的李雅普诺夫指数

    Fig. 9.  Lyapunov exponents of system (Equation(20)).

    图 10  新Chua双涡卷混沌系统 (a) $x\text{ - }y$平面的相图; (b) x方向的时域图

    Fig. 10.  Novel Chua double-scroll chaotic system: (a) Phase diagram on the $x\text{ - }y$ plane; (b) time domain diagram in the x direction.

    图 11  多分段对数函数序列[(24)式], 取M = 1

    Fig. 11.  Multi-segment logarithmic function series(Equation(24)) with M = 1.

    图 12  多分段对数函数序列[(25)式], 取N = 1

    Fig. 12.  Multi-segment logarithmic function series(Equation(25)) with N = 1.

    图 13  x-y平面4-涡卷混沌吸引子的相图

    Fig. 13.  Phase diagram of the 4-scroll chaotic attractor on the x-y plane.

    图 14  x-z平面12-涡卷混沌吸引子的相图

    Fig. 14.  Phase diagram of the 12-scroll chaotic attractor on the x-z plane.

    图 15  最大李雅普诺夫指数

    Fig. 15.  Largest Lyapunov exponent.

    图 16  x-y平面的庞加莱映射

    Fig. 16.  Poincaré mapping on the x-y plane.

    图 17  状态变量和期望值$\left[ {\sin \left( t \right),{\rm{0}},{\rm{0}}} \right]$的时域图 (a) x, xd; (b) y, yd; (c) z, zd

    Fig. 17.  Time domain diagram of state variables and desired values $\left[ {\sin \left( t \right),{\rm{0}},{\rm{0}}} \right]$: (a) x, xd; (b) y, yd; (c) z, zd.

    图 18  状态变量和期望值$\left( {{\rm{0}},{\rm{0}},{\rm{0}}} \right)$的时域图 (a) x, xd; (b) y, yd; (c) z, zd

    Fig. 18.  Time domain diagram of state variables and desired values$\left( {{\rm{0}},{\rm{0}},{\rm{0}}} \right)$: (a) x, xd; (b) y, yd; (c) z, zd.

    图 19  检测原理图

    Fig. 19.  Detection schematic diagram.

    图 20  系统[(52)式]的相图

    Fig. 20.  Phase diagram of system [Equation(52)].

    图 21  检测系统[(53)式]的相图

    Fig. 21.  Phase diagram of the detection system [Equation(53)]

    图 22  控制信号${U_1}\left( t \right)$${U_2}\left( t \right)$${U_3}\left( t \right)$的时域图 (a)原始图; (b)放大图, $ t = [0,100] {\rm{s}} $

    Fig. 22.  Time domain diagram of control signals ${U_1}\left( t \right)$${U_2}\left( t \right)$${U_3}\left( t \right)$: (a) Original diagram (b) enlarging diagram, $t = [0,100]{\rm{ s}}$.

    图 23  待测信号的频谱图

    Fig. 23.  Frequency spectrum of the signal to be detected.

    表 1  12-涡卷混沌吸引子的平衡点、特征值和平衡点的类型

    Table 1.  Equilibrium points, eigenvalues and types of equilibrium points for the 12-scroll chaotic attractor.

    平衡点特征值平衡点的类型
    ${Q_0}\left( {0,0,0} \right)$$67.2809$,$ - 0.5730 \pm {\rm{i3}}{\rm{.9544}}$
    ${Q_{1,2}}\left( { \pm 10,0,0} \right)$$67.2809$,$ - 0.5730 \pm {\rm{i3}}{\rm{.9544}}$
    ${Q_{3,4}}\left( { \pm 20,0,0} \right)$$67.2809$,$ - 0.5730 \pm {\rm{i3}}{\rm{.9544}}$
    ${Q_{5,6}}\left( { \pm 30,0,0} \right)$$67.2809$,$ - 0.5730 \pm {\rm{i3}}{\rm{.9544}}$
    ${Q_{7,8}}\left( { \pm 40,0,0} \right)$$67.2809$,$ - 0.5730 \pm {\rm{i3}}{\rm{.9544}}$
    ${Q_{9,10}}\left( { \pm 50,0,0} \right)$$67.2809$,$ - 0.5730 \pm {\rm{i3}}{\rm{.9544}}$
    ${Q_{11,12}}\left( { \pm 5,0,0} \right)$$ - 6.2777$,$0.1389 \pm {\rm{i3}}{\rm{.5671}}$
    ${Q_{13,14}}\left( { \pm 15,0,0} \right)$$ - 6.2777$,$0.1389 \pm {\rm{i3}}{\rm{.5671}}$
    ${Q_{15,16}}\left( { \pm 25,0,0} \right)$$ - 6.2777$,$0.1389 \pm {\rm{i3}}{\rm{.5671}}$
    ${Q_{17,18}}\left( { \pm 35,0,0} \right)$$ - 6.2777$,$0.1389 \pm {\rm{i3}}{\rm{.5671}}$
    ${Q_{19,20}}\left( { \pm 45,0,0} \right)$$ - 6.2777$,$0.1389 \pm {\rm{i3}}{\rm{.5671}}$
    ${Q_{2{\rm{1}},2{\rm{2}}}}\left( { \pm 55,0,0} \right)$$ - 6.2777$,$0.1389 \pm {\rm{i3}}{\rm{.5671}}$
    下载: 导出CSV
  • [1]

    Chua L O, Komuro M, Matsumoto T 1986 IEEE T. Circuits 33 1072Google Scholar

    [2]

    Suykens J A K, Van de walle J 1993 IEEE T. Circuits-I 40 861Google Scholar

    [3]

    Lü J H, Chen G R, Yu X H, Leung H 2004 IEEE T. Circuits-I 51 2476Google Scholar

    [4]

    Lü J H, Han F L, Yu X H, Chen G R 2004 Automatica 40 1677Google Scholar

    [5]

    陈仕必, 曾以成, 徐茂林, 陈家胜 2011 物理学报 60 020507Google Scholar

    Chen S B, Zeng Y C, Xu M L, Chen J S 2011 Acta Phys. Sin. 60 020507Google Scholar

    [6]

    艾星星, 孙克辉, 贺少波 2014 物理学报 63 040503Google Scholar

    Ai X X, Sun K H, He S B 2014 Acta Phys. Sin. 63 040503Google Scholar

    [7]

    Hong Q H, Xie Q G, Xiao P 2017 Nonlinear Dyn. 87 1015Google Scholar

    [8]

    Zhang G T, Wang F Q 2018 Chin. Phys. B 27 018201Google Scholar

    [9]

    Xu F, Yu P 2010 J. Math. Anal. Appl. 362 252Google Scholar

    [10]

    Chen Z, Wen G L, Zhou H A, Chen J Y 2017 Optik 130 594Google Scholar

    [11]

    Wang C H, Luo X W, Wan Z 2014 Optik 125 6716Google Scholar

    [12]

    Lü J H, Murali K, Sinha S, Leung H, Aziz-Alaoui M A 2008 Phys. Lett. A 372 3234Google Scholar

    [13]

    Yuan F, Wang G Y, Wang X W 2016 Chaos 26 073107Google Scholar

    [14]

    Wang C H, Liu X M, Xia H 2017 Chaos 27 033114Google Scholar

    [15]

    Hu X Y, Liu C X, Liu L, Yao Y P, Zheng G C 2017 Chin. Phys. B 26 110502Google Scholar

    [16]

    Wang C H, Xia H, Zhou L 2017 Int. J. Bifurcat. Chaos 27 1750091Google Scholar

    [17]

    肖利全, 段书凯, 王丽丹 2018 物理学报 67 090502Google Scholar

    Xiao L Q, Duan S K, Wang L D 2018 Acta Phys. Sin. 67 090502Google Scholar

    [18]

    Wang G Y, Yuan F, Chen G R, Zhang Y 2018 Chaos 28 013125Google Scholar

    [19]

    Ott E, Grebogi C, Yorke J A 1990 Phys. Rev. Lett. 64 1196Google Scholar

    [20]

    Yang C H, Ge Z M, Chang C M, Li S Y 2010 Nonlinear Anal-real. 11 1977Google Scholar

    [21]

    Danaca M F, Fečkan M 2019 Commun. Nonlinear Sci. 74 1Google Scholar

    [22]

    Litak G, Syta A, Borowice M 2007 Chaos Soliton. Fract. 32 694Google Scholar

    [23]

    Gamal Mahmoud M, Ayman A A, Tarek M A, Emad E M 2017 Chaos Soliton. Fract. 104 680Google Scholar

    [24]

    Shen Y J, Wen S F, Yang S P, Guo S Q, Li L R 2018 Int. J. Nonlin. Mech. 98 173Google Scholar

    [25]

    Mfoumou G S, Kenmoé G D, Kofané T C 2019 Mech. Syst. Signal Pr. 119 399Google Scholar

    [26]

    Harb A, Zaher A, Zohdy M 2002 Proceedings of the American Control Conference Anchorage, Ak, USA, May 8-10, 2002 p2251

    [27]

    Laoye J A, Vincent U E, Kareem S O 2009 Chaos Soliton. Fract. 39 356Google Scholar

    [28]

    Njah A N, Sunday O D 2009 Chaos Soliton. Fract. 41 2371Google Scholar

    [29]

    Njah A N 2010 Nonlinear Dyn. 61 1Google Scholar

    [30]

    Birx D L, Pipenberg S J 1992 International Joint Conference on Neural Networks Baltimore, MD, USA, June 7-11, 1992 p881

    [31]

    徐艳春, 杨春玲 2010 哈尔滨工业大学学报 42 446Google Scholar

    Xu Y C, Yang C L 2010 Journal of Harbin Institute of Technology 42 446Google Scholar

    [32]

    Xu Y C, Yang C L, Qu X D 2010 Chin. Phys. B 19 030516Google Scholar

    [33]

    Li G Z, Zhang B 2017 IEEE T. Ind. Electron. 64 2255

    [34]

    Zhong G Q, Man K F, Chen G R 2002 Int. J. Bifurcat. Chaos 12 2907Google Scholar

    [35]

    Yu S M, Lü J H, Chen G R 2007 Int. J. Bifurcat. Chaos 17 1785Google Scholar

    [36]

    Christopher P S 1993 IEEE T. Circuits-I 40 675Google Scholar

    [37]

    Cafagna D, Grassi G 2003 Int. J. Bifurcat. Chaos 13 2889Google Scholar

    [38]

    李月, 杨宝俊, 石要武 2003 物理学报 52 526Google Scholar

    Li Y, Yang B J, Shi Y W 2003 Acta Phys. Sin. 52 526Google Scholar

    [39]

    钱勇, 黄成军, 陈陈, 江秀臣 2007 中国电机工程学报 27 89

    Qian Y, Huang C J, Chen C, Jiang X C 2007 Proceedings of the CSEE 27 89

  • [1] 黄泽徽, 李亚安, 陈哲, 刘恋. 基于多尺度熵的Duffing混沌系统阈值确定方法. 物理学报, 2020, 69(16): 160501. doi: 10.7498/aps.69.20191642
    [2] 苏理云, 孙唤唤, 王杰, 阳黎明. 混沌噪声背景下微弱脉冲信号的检测及恢复. 物理学报, 2017, 66(9): 090503. doi: 10.7498/aps.66.090503
    [3] 刘剑鸣, 杨霞, 高跃龙, 刘福才. 类Liu系统在水声微弱信号检测中的应用研究. 物理学报, 2016, 65(7): 070501. doi: 10.7498/aps.65.070501
    [4] 曾喆昭, 周勇, 胡凯. 基于扩展型Duffing振子的局部放电信号检测方法研究. 物理学报, 2015, 64(7): 070505. doi: 10.7498/aps.64.070505
    [5] 行鸿彦, 张强, 徐伟. 混沌海杂波背景下的微弱信号检测混合算法. 物理学报, 2015, 64(4): 040506. doi: 10.7498/aps.64.040506
    [6] 焦尚彬, 任超, 李鹏华, 张青, 谢国. 乘性和加性α稳定噪声环境下的过阻尼单稳随机共振现象. 物理学报, 2014, 63(7): 070501. doi: 10.7498/aps.63.070501
    [7] 范剑, 赵文礼, 张明路, 檀润华, 王万强. 随机共振动力学机理及其微弱信号检测方法的研究. 物理学报, 2014, 63(11): 110506. doi: 10.7498/aps.63.110506
    [8] 吴勇峰, 黄绍平, 金国彬. 基于耦合Duffing振子的局部放电信号检测方法研究. 物理学报, 2013, 62(13): 130505. doi: 10.7498/aps.62.130505
    [9] 范剑, 赵文礼, 王万强. 基于Duffing振子的微弱周期信号混沌检测性能研究. 物理学报, 2013, 62(18): 180502. doi: 10.7498/aps.62.180502
    [10] 高仕龙, 钟苏川, 韦鹍, 马洪. 基于混沌和随机共振的微弱信号检测. 物理学报, 2012, 61(18): 180501. doi: 10.7498/aps.61.180501
    [11] 行鸿彦, 程艳燕, 徐伟. 基于广义窗函数和最小二乘支持向量机的混沌背景下微弱信号检测. 物理学报, 2012, 61(10): 100506. doi: 10.7498/aps.61.100506
    [12] 王林泽, 赵文礼, 陈旋. 基于随机共振原理的分段线性模型的理论分析与实验研究. 物理学报, 2012, 61(16): 160501. doi: 10.7498/aps.61.160501
    [13] 行鸿彦, 祁峥东, 徐伟. 基于选择性支持向量机集成的海杂波背景中的微弱信号检测. 物理学报, 2012, 61(24): 240504. doi: 10.7498/aps.61.240504
    [14] 吴勇峰, 张世平, 孙金玮, Peter Rolfe, 李智. 脉冲激励下环形耦合Duffing振子间的瞬态同步突变现象. 物理学报, 2011, 60(10): 100509. doi: 10.7498/aps.60.100509
    [15] 吴勇峰, 张世平, 孙金玮, Peter Rolfe. 环形耦合Duffing振子间的同步突变. 物理学报, 2011, 60(2): 020511. doi: 10.7498/aps.60.020511
    [16] 朱光起, 丁珂, 张宇, 赵远. 基于随机共振进行弱信号探测的实验研究. 物理学报, 2010, 59(5): 3001-3006. doi: 10.7498/aps.59.3001
    [17] 行鸿彦, 金天力. 基于对偶约束最小二乘支持向量机的混沌海杂波背景中的微弱信号检测. 物理学报, 2010, 59(1): 140-146. doi: 10.7498/aps.59.140
    [18] 吴忠强, 邝钰. 多涡卷混沌系统的广义同步控制. 物理学报, 2009, 58(10): 6823-6827. doi: 10.7498/aps.58.6823
    [19] 行鸿彦, 徐 伟. 混沌背景中微弱信号检测的神经网络方法. 物理学报, 2007, 56(7): 3771-3776. doi: 10.7498/aps.56.3771
    [20] 林 敏, 黄咏梅. 调制与解调用于随机共振的微弱周期信号检测. 物理学报, 2006, 55(7): 3277-3282. doi: 10.7498/aps.55.3277
计量
  • 文章访问数:  12197
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-12
  • 修回日期:  2019-04-24
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回