搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩展型Duffing振子的局部放电信号检测方法研究

曾喆昭 周勇 胡凯

引用本文:
Citation:

基于扩展型Duffing振子的局部放电信号检测方法研究

曾喆昭, 周勇, 胡凯

Study on partial discharge signals detection by extended Duffing oscillator

Zeng Zhe-Zhao, Zhou Yong, Hu Kai
PDF
导出引用
  • 目前, 小波阈值去噪法、数字滤波法、傅里叶频域变换法等常用的微弱信号检测方法所能达到的最低检测信噪比为-10 dB, 而双向环形耦合Duffing振子能达到的最低检测信噪比为-20 dB. 但是, 现场检测时常常会出现更低信噪比的放电脉冲信号, 因此现有检测方法就很难满足信号检测的实际需求. 为了有效解决该难题, 研究了一种扩展型Duffing振子的微弱脉冲信号检测的新方法. 该方法的主要思想是使用广义时间尺度变换, 将Duffing振子模型变换为扩展型Duffing振子模型, 有效扩展了微弱信号的频率检测范围. 仿真结果表明, 扩展型Duffing振子不仅具有良好的噪声免疫特性, 而且能有效检测到信噪比低至-40 dB的局部放电微弱脉冲信号, 进一步扩展了现有Duffing振子微弱信号检测方法的检测范围和应用领域.
    At present, commonly used methods of weak signal detection such as the wavelet threshold denoising method, digital filtering method, the Fourier frequency domain transformation etc. can achieve the lowest detection of signal-to-noise ratio (SNR) of -10 dB, and the bidirectional ring coupled Duffing oscillator can reach the lowest detected SNR of -20 dB. But the discharge pulse signal with a lower SNR often appears in on-site testing, so the existing detection methods are difficult to meet the practical requirements of weak signal detection. In order to effectively solve the problem, a new method for weak pulse signal detection is proposed based on an extended-Duffing oscillator. The main idea of this method is to make the Duffing oscillator model transform to an extended-Duffing oscillator model by using the general time scale transformation. This approach can effectively expand the frequency detection range for weak signal detection. In addition, because the critical amplitude of the Duffing system depends on various parameters, such as system parameters, initial values, driving signal frequency, and calculation step of Runge - Kutta method etc.. However, the Melnikov method is an approximate analytical method, which does not take into account the factors such as initial values and calculation step, therefore, the Melnikov method is not suitable for numerical simulations, and lack of practicality. For this, the critical amplitude of chaos with high accuracy is determined only through the simulation experiment. Experimental results show that the critical amplitude is equal to 0.825010 when the incentive angular frequency of the extended-Duffing oscillator equals 10000 rad/s, and the extended-Duffing oscillator changes from the critical chaotic state to the large scale cycle state for small changes (10-6) of the driving amplitude. The simulation results show that the extended-Duffing oscillator not only has a good noise immunity performance, but also can effectively detect weak partial discharge pulse signal so that the signal-to-noise ratio can be lower than -40 dB. This method further expands the detection range and application fields of weak signals.
    • 基金项目: 国家自然科学基金(批准号: 61040049)、湖南省自然科学基金(批准号: 11JJ6064)、智能电网运行与控制湖南省重点实验室项目和电子科学与技术湖南省重点学科资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61040049), the Natural Science Foundation of Hunan Province, China (Grant No. 11JJ6064), the Foundation of Hunan Province Key Laboratory of Smart Grids Operation and Control and the key Discipline of Electronic Science and Technology in Hunan Province.
    [1]

    Li Y, Yang B J, Du L Z, Yuan Y 2003 Chin. Phys. 12 0714

    [2]

    Xiang X Q, Shi B C 2010 Chaos 20 013104

    [3]

    Lai Z H, Leng Y G, Sun J Q, Fan S B 2012 Acta Phys. Sin. 61 050503 (in Chinese) [赖志慧, 冷永刚, 孙建桥, 范胜波 2012 物理学报 61 050503]

    [4]

    Birx D I 1992 IEEE Int. Joint Conf. Neural Networks 22 881

    [5]

    Ji C P, Guo W P, Ji H H 2013 Control of Noise and Vibration 33 040207 (in Chinese) [冀常鹏, 郭伟平, 姬红红 2013 噪声与振动控制 33 040207]

    [6]

    Zhao W L, Huang Z Q, Zhao J X 2011 J. Circuits and Systems 16 06120 (in Chinese) [赵文礼, 黄振强, 赵景晓 2011 电路与系统学报 16 06120]

    [7]

    Zhao W L, Fan J, Wu M, Wang W Q 2014 Control Theory & Application 31 020250 (in Chinese) [赵文礼, 范剑, 吴敏, 王万强 2014 控制理论与应用 31 020250]

    [8]

    Yuan Y, Li Y, Mandic D P, Yang B J 2009 Chin. Phys.B 18 958

    [9]

    Wu Y F, Zhang S P, Sun J W, Rolfe P 2011 Acta Phys. Sin. 60 020511 (in Chinese) [吴勇峰, 张世平, 孙金玮, Peter Rolfe 2011 物理学报 60 020511]

    [10]

    Wu Y F, Huang S P, Jin G B 2013 Acta Phys. Sin. 62 130505 (in Chinese) [吴勇峰, 黄绍平, 金国彬 2013 物理学报 62 130505]

  • [1]

    Li Y, Yang B J, Du L Z, Yuan Y 2003 Chin. Phys. 12 0714

    [2]

    Xiang X Q, Shi B C 2010 Chaos 20 013104

    [3]

    Lai Z H, Leng Y G, Sun J Q, Fan S B 2012 Acta Phys. Sin. 61 050503 (in Chinese) [赖志慧, 冷永刚, 孙建桥, 范胜波 2012 物理学报 61 050503]

    [4]

    Birx D I 1992 IEEE Int. Joint Conf. Neural Networks 22 881

    [5]

    Ji C P, Guo W P, Ji H H 2013 Control of Noise and Vibration 33 040207 (in Chinese) [冀常鹏, 郭伟平, 姬红红 2013 噪声与振动控制 33 040207]

    [6]

    Zhao W L, Huang Z Q, Zhao J X 2011 J. Circuits and Systems 16 06120 (in Chinese) [赵文礼, 黄振强, 赵景晓 2011 电路与系统学报 16 06120]

    [7]

    Zhao W L, Fan J, Wu M, Wang W Q 2014 Control Theory & Application 31 020250 (in Chinese) [赵文礼, 范剑, 吴敏, 王万强 2014 控制理论与应用 31 020250]

    [8]

    Yuan Y, Li Y, Mandic D P, Yang B J 2009 Chin. Phys.B 18 958

    [9]

    Wu Y F, Zhang S P, Sun J W, Rolfe P 2011 Acta Phys. Sin. 60 020511 (in Chinese) [吴勇峰, 张世平, 孙金玮, Peter Rolfe 2011 物理学报 60 020511]

    [10]

    Wu Y F, Huang S P, Jin G B 2013 Acta Phys. Sin. 62 130505 (in Chinese) [吴勇峰, 黄绍平, 金国彬 2013 物理学报 62 130505]

  • [1] 李远芳, 姜园, 赵磊. 基于改进强耦合振子的微弱脉冲信号检测方法. 物理学报, 2024, 73(4): 040503. doi: 10.7498/aps.73.20231343
    [2] 黄泽徽, 李亚安, 陈哲, 刘恋. 基于多尺度熵的Duffing混沌系统阈值确定方法. 物理学报, 2020, 69(16): 160501. doi: 10.7498/aps.69.20191642
    [3] 曹保锋, 李鹏, 李小强, 张雪芹, 宁王师, 梁睿, 李欣, 胡淼, 郑毅. 基于强耦合Duffing振子的微弱脉冲信号检测与参数估计. 物理学报, 2019, 68(8): 080501. doi: 10.7498/aps.68.20181856
    [4] 苏理云, 孙唤唤, 王杰, 阳黎明. 混沌噪声背景下微弱脉冲信号的检测及恢复. 物理学报, 2017, 66(9): 090503. doi: 10.7498/aps.66.090503
    [5] 刘剑鸣, 杨霞, 高跃龙, 刘福才. 类Liu系统在水声微弱信号检测中的应用研究. 物理学报, 2016, 65(7): 070501. doi: 10.7498/aps.65.070501
    [6] 牛德智, 陈长兴, 班斐, 徐浩翔, 李永宾, 王卓, 任晓岳, 陈强. Duffing振子微弱信号检测盲区消除及检测统计量构造. 物理学报, 2015, 64(6): 060503. doi: 10.7498/aps.64.060503
    [7] 行鸿彦, 张强, 徐伟. 混沌海杂波背景下的微弱信号检测混合算法. 物理学报, 2015, 64(4): 040506. doi: 10.7498/aps.64.040506
    [8] 焦尚彬, 任超, 李鹏华, 张青, 谢国. 乘性和加性α稳定噪声环境下的过阻尼单稳随机共振现象. 物理学报, 2014, 63(7): 070501. doi: 10.7498/aps.63.070501
    [9] 范剑, 赵文礼, 张明路, 檀润华, 王万强. 随机共振动力学机理及其微弱信号检测方法的研究. 物理学报, 2014, 63(11): 110506. doi: 10.7498/aps.63.110506
    [10] 刘海波, 吴德伟, 金伟, 王永庆. Duffing振子微弱信号检测方法研究. 物理学报, 2013, 62(5): 050501. doi: 10.7498/aps.62.050501
    [11] 范剑, 赵文礼, 王万强. 基于Duffing振子的微弱周期信号混沌检测性能研究. 物理学报, 2013, 62(18): 180502. doi: 10.7498/aps.62.180502
    [12] 吴勇峰, 黄绍平, 金国彬. 基于耦合Duffing振子的局部放电信号检测方法研究. 物理学报, 2013, 62(13): 130505. doi: 10.7498/aps.62.130505
    [13] 行鸿彦, 祁峥东, 徐伟. 基于选择性支持向量机集成的海杂波背景中的微弱信号检测. 物理学报, 2012, 61(24): 240504. doi: 10.7498/aps.61.240504
    [14] 吴勇峰, 张世平, 孙金玮, Peter Rolfe. 环形耦合Duffing振子间的同步突变. 物理学报, 2011, 60(2): 020511. doi: 10.7498/aps.60.020511
    [15] 吴勇峰, 张世平, 孙金玮, Peter Rolfe, 李智. 脉冲激励下环形耦合Duffing振子间的瞬态同步突变现象. 物理学报, 2011, 60(10): 100509. doi: 10.7498/aps.60.100509
    [16] 朱光起, 丁珂, 张宇, 赵远. 基于随机共振进行弱信号探测的实验研究. 物理学报, 2010, 59(5): 3001-3006. doi: 10.7498/aps.59.3001
    [17] 行鸿彦, 金天力. 基于对偶约束最小二乘支持向量机的混沌海杂波背景中的微弱信号检测. 物理学报, 2010, 59(1): 140-146. doi: 10.7498/aps.59.140
    [18] 李 月, 路 鹏, 杨宝俊, 赵雪平. 用一类特定的双耦合Duffing振子系统检测强色噪声背景中的周期信号. 物理学报, 2006, 55(4): 1672-1677. doi: 10.7498/aps.55.1672
    [19] 林 敏, 黄咏梅. 调制与解调用于随机共振的微弱周期信号检测. 物理学报, 2006, 55(7): 3277-3282. doi: 10.7498/aps.55.3277
    [20] 李 月, 杨宝俊, 石要武. 色噪声背景下微弱正弦信号的混沌检测. 物理学报, 2003, 52(3): 526-530. doi: 10.7498/aps.52.526
计量
  • 文章访问数:  5046
  • PDF下载量:  305
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-05
  • 修回日期:  2014-10-31
  • 刊出日期:  2015-04-05

/

返回文章
返回