搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

忆阻混沌电路的分析与实现

包伯成 胡文 许建平 刘中 邹凌

引用本文:
Citation:

忆阻混沌电路的分析与实现

包伯成, 胡文, 许建平, 刘中, 邹凌

Analysis and implementation of memristor chaotic circuit

Bao Bo-Cheng, Hu Wen, Xu Jian-Ping, Liu Zhong, Zou Ling
PDF
导出引用
  • 具有记忆功能的忆阻器是除电阻器、电容器和电感器之外的第四种基本二端电路元件. 提出了由-q平面上的一条三次单调上升的非线性曲线来确定的光滑磁控忆阻器,它有着斜8字形的类紧磁滞回线的伏安特性曲线. 采用此忆阻器和负电导构成的有源忆阻器替换蔡氏混沌电路中的蔡氏二极管,导出了一个基于忆阻器的混沌振荡电路. 此外,利用常规的运算放大器和乘法器等元器件给出了有源忆阻器的等效电路实现形式. 理论分析、数值仿真和电路仿真结果一致,均表明忆阻混沌电路的动力学行为依赖于忆阻器的初始状态,在不同初始状态下存在混沌振荡、周期振荡或稳定的汇等不同的运行轨道.
    Memristor with memory function is the fourth fundamental two-terminal circuit element, besides resistor, capacitor and inductor. In this paper, a smooth flux-controlled memristor is described by a monotone-increasing nonlinearity curve in the -q plane, and it has an italic type 8 like voltage current relation curve that looks like a pinched hysteresis loop characteristics. By replacing Chua's diode with an active memristor consisting of a smooth flux-controlled memristor and a negative conductance, a memristor based chaotic oscillation is derived from Chua's circuit. Furthermore, the equivalent circuit implementation form for the active memristor is designed by utilizing conventional components such as operational amplifiers and multipliers. The results from theoretical analysis, numerical simulations and circuit simulations are completely identical with each other, and demonstrate that the dynamical behaviors of the memristor chaotic circuit are dependent on the memristor initial state, showing different orbits such as chaotic oscillation, periodic oscillation and stable sink under different initial states.
    • 基金项目: 国家自然科学基金(批准号:60971090)、江苏省自然科学基金(批准号:BK2009105)和航空科学基金(批准号:2009ZC52038)资助的课题.
    [1]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507

    [2]

    Chua L O, Kang S M 1976 Proc. IEEE 64 209

    [3]
    [4]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [5]
    [6]
    [7]

    Tour J M, He T 2008 Nature 453 42

    [8]
    [9]

    Wey T A, Benderli S 2009 Electron. Lett. 45 1103

    [10]

    Witrisal K 2009 Electron. Lett. 45 713

    [11]
    [12]
    [13]

    Biolek Z, Biolek D, Biolkov V 2009 Radioengineering 18 210

    [14]
    [15]

    Joglekar Y N, Wolf S J 2009 Eur. J. Phys. 30 661

    [16]

    Itoh M, Chua L O 2008 Int. J. Bifur. Chaos 18 3183

    [17]
    [18]

    Muthuswamy B 2009 IETE Techn. Rev. 26 415

    [19]
    [20]

    Bao B C, Liu Z, Xu J P 2010 Electron. Lett. 46 228

    [21]
    [22]

    Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510

    [23]
    [24]

    Bao B C, Liu Z, Xu J P 2010 Acta Phys. Sin. 59 3785 (in Chinese) [包伯成、刘 中、许建平 2010 物理学报 59 3785]

    [25]
    [26]

    Barboza R, Chua L O 2008 Int. J. Bifur. Chaos 18 943

    [27]
    [28]

    Bao B C, Li C B, Xu J P, Liu Z 2008 Chin. Phys. B 17 4022

    [29]
    [30]

    Li C B, Wang D C 2009 Acta Phys. Sin. 58 764 (in Chinese) [李春彪、王德纯 2009 物理学报 58 764]

    [31]
    [32]
    [33]

    Wang X, Chen Y, Xi H, Dimitrov D 2009 IEEE Electron Device Lett. 30 294

    [34]
    [35]

    Pershin Y V, Ventra M D 2008 Phys. Rev. B 78 113309

    [36]
    [37]

    Zhong G 1994 IEEE Trans. Circuits Syst. 41 934

    [38]
    [39]

    Muthuswamy B 2010 Int. J. Bifur. Chaos 20 1335

  • [1]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507

    [2]

    Chua L O, Kang S M 1976 Proc. IEEE 64 209

    [3]
    [4]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [5]
    [6]
    [7]

    Tour J M, He T 2008 Nature 453 42

    [8]
    [9]

    Wey T A, Benderli S 2009 Electron. Lett. 45 1103

    [10]

    Witrisal K 2009 Electron. Lett. 45 713

    [11]
    [12]
    [13]

    Biolek Z, Biolek D, Biolkov V 2009 Radioengineering 18 210

    [14]
    [15]

    Joglekar Y N, Wolf S J 2009 Eur. J. Phys. 30 661

    [16]

    Itoh M, Chua L O 2008 Int. J. Bifur. Chaos 18 3183

    [17]
    [18]

    Muthuswamy B 2009 IETE Techn. Rev. 26 415

    [19]
    [20]

    Bao B C, Liu Z, Xu J P 2010 Electron. Lett. 46 228

    [21]
    [22]

    Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510

    [23]
    [24]

    Bao B C, Liu Z, Xu J P 2010 Acta Phys. Sin. 59 3785 (in Chinese) [包伯成、刘 中、许建平 2010 物理学报 59 3785]

    [25]
    [26]

    Barboza R, Chua L O 2008 Int. J. Bifur. Chaos 18 943

    [27]
    [28]

    Bao B C, Li C B, Xu J P, Liu Z 2008 Chin. Phys. B 17 4022

    [29]
    [30]

    Li C B, Wang D C 2009 Acta Phys. Sin. 58 764 (in Chinese) [李春彪、王德纯 2009 物理学报 58 764]

    [31]
    [32]
    [33]

    Wang X, Chen Y, Xi H, Dimitrov D 2009 IEEE Electron Device Lett. 30 294

    [34]
    [35]

    Pershin Y V, Ventra M D 2008 Phys. Rev. B 78 113309

    [36]
    [37]

    Zhong G 1994 IEEE Trans. Circuits Syst. 41 934

    [38]
    [39]

    Muthuswamy B 2010 Int. J. Bifur. Chaos 20 1335

  • [1] 盛泉, 耿婧旎, 王爱华, 王盟, 齐岳, 刘俊杰, 付士杰, 史伟, 姚建铨. 基于猫眼逆反射器的大范围免调试激光器. 物理学报, 2023, 72(4): 044203. doi: 10.7498/aps.72.20221956
    [2] 刘奇, 李璞, 开超, 胡春强, 蔡强, 张建国, 徐兵杰. 基于时延光子储备池计算的混沌激光短期预测. 物理学报, 2021, 70(15): 154209. doi: 10.7498/aps.70.20210355
    [3] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211549
    [4] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [5] 原青云, 孙永卫, 张希军. 基于电荷守恒定律的航天器内带电三维仿真简化模型. 物理学报, 2019, 68(19): 195201. doi: 10.7498/aps.68.20190631
    [6] 胡伟达, 李庆, 陈效双, 陆卫. 具有变革性特征的红外光电探测器. 物理学报, 2019, 68(12): 120701. doi: 10.7498/aps.68.20190281
计量
  • 文章访问数:  8322
  • PDF下载量:  1650
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-05
  • 修回日期:  2011-04-18
  • 刊出日期:  2011-06-05

/

返回文章
返回