-
针对超材料吸波频带窄的问题, 采用金属螺旋环超表面与碳纤维吸波材料相复合的方式, 设计了宽频高性能复合吸波体. 研究发现, 在碳纤维吸波材料中引入双层螺旋环超表面能显著增强吸收峰值和吸波带宽, 且适当增加螺旋环初始线长和吸收层厚度有利于提高复合吸波体的吸波性能, 9.2—18.0 GHz频段的反射损耗均优于–10 dB (带宽达8.8 GHz), 吸收峰值达–14.4 dB. 利用S参数计算得到螺旋环-碳纤维复合吸波体的等效电磁参数和特征阻抗呈现多频点谐振特性, 通过构建双层螺旋环超表面等效电路模型, 定量计算了复合吸波体的电磁谐振频点, 发现由等效电路模型获得的谐振频点计算值与仿真值基本相符, 说明该复合吸波体多频点电磁谐振是宽频电磁损耗的主要机制.High-performance absorbing material can play an important role in electromagnetic compatibility, electromagnetic radiation protection, and anti-detection of special equipment. Combining traditional absorbing material with metamaterial is an important direction for developing absorbing material. The composite absorbing body based on the development of metamaterial has advantages of thin thickness, light weight, strong absorption, and adjustable absorption band, but the super material absorption body composed of single-sized metal pattern elements possesses generally strong absorption only for electromagnetic waves at a certain frequency. It is difficult to meet the requirement for wide frequency absorption in practical applications. In order to broaden the absorption bandwidth of metamatial, metal spiral-ring metasurface coated short carbon fiber absorber with enhanced microwave absorbing performance is proposed. The absorber is a two-dimensional structure formed by periodically arranging a large number of individual absorber units in the horizontal and vertical direction. In the HFSS simulation software, a " master-slave boundary condition” consisting of " master boundary” and " slave boundary” is provided. Under this boundary condition, the electric field between adjacent boundaries has a phase difference, which can be used to simulate an infinite array. The research results show that the obvious enhancement of both the absorption peak and bandwidth can be observed by embedding the double-layer spiral-ring metasurfaces. The increase of initial length of spiral-rings and thickness of absorber are beneficial to further enhancing the microwave absorption. The reflection loss from 9.2 GHz to 18.0 GHz are under –10 dB (the bandwidth reaches 8.8 GHz), and the peak of S11 is –14.4 dB. Besides, we find that the effective electromagnetic parameters and impedance of spiral-ring metasurface embedded microwave absorber present obvious resonant phenomenon at multi-frequencies by calculating S parameters. Furthermore, an equivalent circuit model regarding double-layer spiral-ring embedded absorber is established to reveal the attenuation mechanism of microwave energy. The resonant frequencies derived from this model are well accord with the simulated results. Thereby, the multi-electromagnetic resonant frequencies make the composite microwave absorber combined with double-layer metal spiral-ring and carbon fiber have microwave reflection loss in a wide bandwidth.
-
Keywords:
- spiral-ring metasurface /
- electromagnetic resonant /
- equivalent circuit model /
- microwave loss mechanism
[1] Li J S, Huang H, Zhou Y J, Zhang C Y, Li Z T 2017 J. Mater. Res. 32 1213Google Scholar
[2] 熊益军, 王岩, 王强, 王春齐, 黄小忠, 张芬, 周丁 2018 物理学报 67 084202Google Scholar
Xiong Y J, Wang Y, Wang Q, Wang C Q, Huang X Z, Zhang F, Zhou D 2018 Acta Phys. Sin. 67 084202Google Scholar
[3] Luo H, Feng W L, Liao C W, Deng L W, Liu S, Zhang H B, Xiao P 2018 J. Appl. Phys. 123 104103Google Scholar
[4] He J, Deng L W, Liu S, Yan S Q, Luo H, Li Y H, He L H, Huang S X 2017 J. Magn. Magn. Mater. 444 49Google Scholar
[5] 贺龙辉, 胡照文, 邓联文, 黄生祥, 刘胜, 贺君, 文瑞 2015 功能材料 46 23120Google Scholar
He L H, Hu Z W, Deng L W, Huang S X, Liu S, He J, Wen R 2015 J. Funct. Mater. 46 23120Google Scholar
[6] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar
[7] 张勇, 段俊萍, 张文栋, 王万军, 张斌珍 2016 材料导报 30 157
Zhang Y, Duan J P, Zhang W D, Wang W J, Zhag B Z 2016 Mater. Rev. 30 157
[8] 高海涛, 王建江, 许宝才, 李泽, 刘嘉玮 2017 材料导报 31 15Google Scholar
Gao H T, Wang J J, Xu B C, Li Z, Liu J W 2017 Mater. Rev. 31 15Google Scholar
[9] 宋健, 李敏华, 董建峰 2017 材料导报 31 114Google Scholar
Song J, Li M H, Dong J F 2017 Mater. Rev. 31 114Google Scholar
[10] 顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华 2011 物理学报 60 087802Google Scholar
Gu C, Qu S B, Pei Z B, Xu Z, Lin B Q, Zhou H, Bai P, Gu W, Peng W D, Ma H 2011 Acta Phys. Sin. 60 087802Google Scholar
[11] 高军, 张浩, 曹祥玉, 杨欢欢, 杨群, 李文强 2015 西安电子科技大学学报 42 130Google Scholar
Gao J, Zhang H, Cao X Y, Yang H H, Yang Q, Li W Q 2015 J. Xidian Univ. 42 130Google Scholar
[12] 刘凌云, 邹浩, 李珊, 程用志 2015 功能材料 46 20053Google Scholar
Liu L Y, Zou H, Li S, Cheng Y Z 2015 J. Funct. Mater. 46 20053Google Scholar
[13] 占生宝, 刘涛, 倪受春, 肖文标, 付翔 2013 兵器材料科学与工程 36 78Google Scholar
Zhan S B, Liu T, Ni S C, Xiao W B, Fu X 2013 Ordnance Mater. Sci. Engin. 36 78Google Scholar
[14] 程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2012 物理学报 61 134102Google Scholar
Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102Google Scholar
[15] Cheng Y Z, Gong R Z, Nie Y, Wang X 2012 Chin. Phys. B 21 127801Google Scholar
[16] Zhang H B, Deng L W, Zhou P H, Zhang L, Cheng D M, Chen H Y, Liang D F, Deng L J 2013 J. Appl. Phys. 113 013903Google Scholar
[17] Zhao J C, Cheng Y Z 2016 J. Electron. Mater. 45 5033Google Scholar
[18] Cheng Y Z, He B, Zhao J C, Gong R Z 2017 J. Electron. Mater. 46 1293Google Scholar
[19] Cheng Y Z, Cheng Z Z, Mao X S, Gong R Z 2017 Material 10 1241Google Scholar
[20] Luo H, Cheng Y Z 2018 J. Electron. Mater. 47 323Google Scholar
[21] Sun J B, Liu L Y, Dong G Y, Zhou J 2011 Opt. Express 19 21155Google Scholar
[22] Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photon. Techn. Lett. 26 111Google Scholar
[23] Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 Appl. Phys. A 115 1187Google Scholar
[24] 程用志 2015 博士学位论文 (武汉: 华中科技大学)
Cheng Y Z 2015 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[25] Li W, Wu T L, Wang W, Guan J G, Zhai P C 2014 Appl. Phys. Lett. 104 022903
[26] 郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅 2015 物理学报 64 077801Google Scholar
Guo F, Du H L, Qu S B, Xia S, Xu Z, Zhao J F, Zhang H M 2015 Acta Phys. Sin. 64 077801Google Scholar
[27] Sun L K, Cheng H F, Zhou Y J, Wang J 2011 Appl. Phys. A 105 49Google Scholar
[28] 徐永顺, 别少伟, 江建军, 徐海兵, 万东, 周杰 2014 物理学报 63 205202Google Scholar
Xu Y S, Bie S W, Jiang J J, Xu H B, Wan D, Zhou J 2014 Acta Phys. Sin. 63 205202Google Scholar
[29] Hou Z L, Kong L B, Jin H B, Cao M S, Li X, Qi X 2012 Chin. Phys. Lett. 29 017701Google Scholar
-
图 5 螺旋环结构参数对双层螺旋环-碳纤维复合吸波体反射损耗的影响 (a)初始线长; (b)线宽; (c)损耗层厚度
Fig. 5. Effects of structure parameters of spiral-ring on the reflection loss of double layers metal spiral-ring with carbon fiber composite microwave absorber: (a) Initial length of line; (b) width of line; (c) thickness of upper dielectric layer
图 8 电场强度E幅值分布俯视图 (a) f01 = 9.04 GHz; (b) f02 = 12.80 GHz; (c) f03 = 16.48 GHz; (d)等厚度有耗介质(f03 = 16.48 GHz)
Fig. 8. Top view of electric field amplitude E distribution: (a) f01 = 9.04 GHz; (b) f02 =12.80 GHz; (c) f03 = 16.48 GHz; (d) dielectric with dielectric loss with the same thickness (f03 = 16.48 GHz)
表 1 复合吸波体谐振频点的等效电路模型计算值
Table 1. Calculation results of resonance frequency of composite microwave absorber.
编号i 等效电磁参数谐振
频点f0i/GHz相对介电
常数εr等效电容器/电感线
长度ai/mm修正因子k = 1时近似
谐振频点fi/GHz修正因子
kf0i与fi的
相对误差1 9.04 2.216 8.0 9.12 1.02 0.88% 2 12.80 2.054 6.5 11.66 0.83 –8.91% 3 16.48 1.985 5.0 15.42 0.88 –6.43% 4 11.12 2.110 7.0 10.68 0.92 –3.96% 5 14.64 2.009 5.0 15.33 1.10 4.71% -
[1] Li J S, Huang H, Zhou Y J, Zhang C Y, Li Z T 2017 J. Mater. Res. 32 1213Google Scholar
[2] 熊益军, 王岩, 王强, 王春齐, 黄小忠, 张芬, 周丁 2018 物理学报 67 084202Google Scholar
Xiong Y J, Wang Y, Wang Q, Wang C Q, Huang X Z, Zhang F, Zhou D 2018 Acta Phys. Sin. 67 084202Google Scholar
[3] Luo H, Feng W L, Liao C W, Deng L W, Liu S, Zhang H B, Xiao P 2018 J. Appl. Phys. 123 104103Google Scholar
[4] He J, Deng L W, Liu S, Yan S Q, Luo H, Li Y H, He L H, Huang S X 2017 J. Magn. Magn. Mater. 444 49Google Scholar
[5] 贺龙辉, 胡照文, 邓联文, 黄生祥, 刘胜, 贺君, 文瑞 2015 功能材料 46 23120Google Scholar
He L H, Hu Z W, Deng L W, Huang S X, Liu S, He J, Wen R 2015 J. Funct. Mater. 46 23120Google Scholar
[6] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar
[7] 张勇, 段俊萍, 张文栋, 王万军, 张斌珍 2016 材料导报 30 157
Zhang Y, Duan J P, Zhang W D, Wang W J, Zhag B Z 2016 Mater. Rev. 30 157
[8] 高海涛, 王建江, 许宝才, 李泽, 刘嘉玮 2017 材料导报 31 15Google Scholar
Gao H T, Wang J J, Xu B C, Li Z, Liu J W 2017 Mater. Rev. 31 15Google Scholar
[9] 宋健, 李敏华, 董建峰 2017 材料导报 31 114Google Scholar
Song J, Li M H, Dong J F 2017 Mater. Rev. 31 114Google Scholar
[10] 顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华 2011 物理学报 60 087802Google Scholar
Gu C, Qu S B, Pei Z B, Xu Z, Lin B Q, Zhou H, Bai P, Gu W, Peng W D, Ma H 2011 Acta Phys. Sin. 60 087802Google Scholar
[11] 高军, 张浩, 曹祥玉, 杨欢欢, 杨群, 李文强 2015 西安电子科技大学学报 42 130Google Scholar
Gao J, Zhang H, Cao X Y, Yang H H, Yang Q, Li W Q 2015 J. Xidian Univ. 42 130Google Scholar
[12] 刘凌云, 邹浩, 李珊, 程用志 2015 功能材料 46 20053Google Scholar
Liu L Y, Zou H, Li S, Cheng Y Z 2015 J. Funct. Mater. 46 20053Google Scholar
[13] 占生宝, 刘涛, 倪受春, 肖文标, 付翔 2013 兵器材料科学与工程 36 78Google Scholar
Zhan S B, Liu T, Ni S C, Xiao W B, Fu X 2013 Ordnance Mater. Sci. Engin. 36 78Google Scholar
[14] 程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2012 物理学报 61 134102Google Scholar
Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102Google Scholar
[15] Cheng Y Z, Gong R Z, Nie Y, Wang X 2012 Chin. Phys. B 21 127801Google Scholar
[16] Zhang H B, Deng L W, Zhou P H, Zhang L, Cheng D M, Chen H Y, Liang D F, Deng L J 2013 J. Appl. Phys. 113 013903Google Scholar
[17] Zhao J C, Cheng Y Z 2016 J. Electron. Mater. 45 5033Google Scholar
[18] Cheng Y Z, He B, Zhao J C, Gong R Z 2017 J. Electron. Mater. 46 1293Google Scholar
[19] Cheng Y Z, Cheng Z Z, Mao X S, Gong R Z 2017 Material 10 1241Google Scholar
[20] Luo H, Cheng Y Z 2018 J. Electron. Mater. 47 323Google Scholar
[21] Sun J B, Liu L Y, Dong G Y, Zhou J 2011 Opt. Express 19 21155Google Scholar
[22] Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photon. Techn. Lett. 26 111Google Scholar
[23] Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 Appl. Phys. A 115 1187Google Scholar
[24] 程用志 2015 博士学位论文 (武汉: 华中科技大学)
Cheng Y Z 2015 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[25] Li W, Wu T L, Wang W, Guan J G, Zhai P C 2014 Appl. Phys. Lett. 104 022903
[26] 郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅 2015 物理学报 64 077801Google Scholar
Guo F, Du H L, Qu S B, Xia S, Xu Z, Zhao J F, Zhang H M 2015 Acta Phys. Sin. 64 077801Google Scholar
[27] Sun L K, Cheng H F, Zhou Y J, Wang J 2011 Appl. Phys. A 105 49Google Scholar
[28] 徐永顺, 别少伟, 江建军, 徐海兵, 万东, 周杰 2014 物理学报 63 205202Google Scholar
Xu Y S, Bie S W, Jiang J J, Xu H B, Wan D, Zhou J 2014 Acta Phys. Sin. 63 205202Google Scholar
[29] Hou Z L, Kong L B, Jin H B, Cao M S, Li X, Qi X 2012 Chin. Phys. Lett. 29 017701Google Scholar
计量
- 文章访问数: 11724
- PDF下载量: 297
- 被引次数: 0