搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层螺旋环超表面复合吸波体等效电路模型及微波损耗机制

李宇涵 邓联文 罗衡 贺龙辉 贺君 徐运超 黄生祥

引用本文:
Citation:

双层螺旋环超表面复合吸波体等效电路模型及微波损耗机制

李宇涵, 邓联文, 罗衡, 贺龙辉, 贺君, 徐运超, 黄生祥

Equivalent circuit model and microwave reflection loss mechanism of double-layer spiral-ring metasurface embedded composite microwave absorber

Li Yu-Han, Deng Lian-Wen, Luo Heng, He Long-Hui, He Jun, Xu Yun-Chao, Huang Sheng-Xiang
PDF
HTML
导出引用
  • 针对超材料吸波频带窄的问题, 采用金属螺旋环超表面与碳纤维吸波材料相复合的方式, 设计了宽频高性能复合吸波体. 研究发现, 在碳纤维吸波材料中引入双层螺旋环超表面能显著增强吸收峰值和吸波带宽, 且适当增加螺旋环初始线长和吸收层厚度有利于提高复合吸波体的吸波性能, 9.2—18.0 GHz频段的反射损耗均优于–10 dB (带宽达8.8 GHz), 吸收峰值达–14.4 dB. 利用S参数计算得到螺旋环-碳纤维复合吸波体的等效电磁参数和特征阻抗呈现多频点谐振特性, 通过构建双层螺旋环超表面等效电路模型, 定量计算了复合吸波体的电磁谐振频点, 发现由等效电路模型获得的谐振频点计算值与仿真值基本相符, 说明该复合吸波体多频点电磁谐振是宽频电磁损耗的主要机制.
    High-performance absorbing material can play an important role in electromagnetic compatibility, electromagnetic radiation protection, and anti-detection of special equipment. Combining traditional absorbing material with metamaterial is an important direction for developing absorbing material. The composite absorbing body based on the development of metamaterial has advantages of thin thickness, light weight, strong absorption, and adjustable absorption band, but the super material absorption body composed of single-sized metal pattern elements possesses generally strong absorption only for electromagnetic waves at a certain frequency. It is difficult to meet the requirement for wide frequency absorption in practical applications. In order to broaden the absorption bandwidth of metamatial, metal spiral-ring metasurface coated short carbon fiber absorber with enhanced microwave absorbing performance is proposed. The absorber is a two-dimensional structure formed by periodically arranging a large number of individual absorber units in the horizontal and vertical direction. In the HFSS simulation software, a " master-slave boundary condition” consisting of " master boundary” and " slave boundary” is provided. Under this boundary condition, the electric field between adjacent boundaries has a phase difference, which can be used to simulate an infinite array. The research results show that the obvious enhancement of both the absorption peak and bandwidth can be observed by embedding the double-layer spiral-ring metasurfaces. The increase of initial length of spiral-rings and thickness of absorber are beneficial to further enhancing the microwave absorption. The reflection loss from 9.2 GHz to 18.0 GHz are under –10 dB (the bandwidth reaches 8.8 GHz), and the peak of S11 is –14.4 dB. Besides, we find that the effective electromagnetic parameters and impedance of spiral-ring metasurface embedded microwave absorber present obvious resonant phenomenon at multi-frequencies by calculating S parameters. Furthermore, an equivalent circuit model regarding double-layer spiral-ring embedded absorber is established to reveal the attenuation mechanism of microwave energy. The resonant frequencies derived from this model are well accord with the simulated results. Thereby, the multi-electromagnetic resonant frequencies make the composite microwave absorber combined with double-layer metal spiral-ring and carbon fiber have microwave reflection loss in a wide bandwidth.
      通信作者: 邓联文, denglw@csu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0204600)和国家自然科学基金(批准号: 51802352)资助的课题.
      Corresponding author: Deng Lian-Wen, denglw@csu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0204600) and the National Natural Science Foundation of China (Grant No. 51802352).
    [1]

    Li J S, Huang H, Zhou Y J, Zhang C Y, Li Z T 2017 J. Mater. Res. 32 1213Google Scholar

    [2]

    熊益军, 王岩, 王强, 王春齐, 黄小忠, 张芬, 周丁 2018 物理学报 67 084202Google Scholar

    Xiong Y J, Wang Y, Wang Q, Wang C Q, Huang X Z, Zhang F, Zhou D 2018 Acta Phys. Sin. 67 084202Google Scholar

    [3]

    Luo H, Feng W L, Liao C W, Deng L W, Liu S, Zhang H B, Xiao P 2018 J. Appl. Phys. 123 104103Google Scholar

    [4]

    He J, Deng L W, Liu S, Yan S Q, Luo H, Li Y H, He L H, Huang S X 2017 J. Magn. Magn. Mater. 444 49Google Scholar

    [5]

    贺龙辉, 胡照文, 邓联文, 黄生祥, 刘胜, 贺君, 文瑞 2015 功能材料 46 23120Google Scholar

    He L H, Hu Z W, Deng L W, Huang S X, Liu S, He J, Wen R 2015 J. Funct. Mater. 46 23120Google Scholar

    [6]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [7]

    张勇, 段俊萍, 张文栋, 王万军, 张斌珍 2016 材料导报 30 157

    Zhang Y, Duan J P, Zhang W D, Wang W J, Zhag B Z 2016 Mater. Rev. 30 157

    [8]

    高海涛, 王建江, 许宝才, 李泽, 刘嘉玮 2017 材料导报 31 15Google Scholar

    Gao H T, Wang J J, Xu B C, Li Z, Liu J W 2017 Mater. Rev. 31 15Google Scholar

    [9]

    宋健, 李敏华, 董建峰 2017 材料导报 31 114Google Scholar

    Song J, Li M H, Dong J F 2017 Mater. Rev. 31 114Google Scholar

    [10]

    顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华 2011 物理学报 60 087802Google Scholar

    Gu C, Qu S B, Pei Z B, Xu Z, Lin B Q, Zhou H, Bai P, Gu W, Peng W D, Ma H 2011 Acta Phys. Sin. 60 087802Google Scholar

    [11]

    高军, 张浩, 曹祥玉, 杨欢欢, 杨群, 李文强 2015 西安电子科技大学学报 42 130Google Scholar

    Gao J, Zhang H, Cao X Y, Yang H H, Yang Q, Li W Q 2015 J. Xidian Univ. 42 130Google Scholar

    [12]

    刘凌云, 邹浩, 李珊, 程用志 2015 功能材料 46 20053Google Scholar

    Liu L Y, Zou H, Li S, Cheng Y Z 2015 J. Funct. Mater. 46 20053Google Scholar

    [13]

    占生宝, 刘涛, 倪受春, 肖文标, 付翔 2013 兵器材料科学与工程 36 78Google Scholar

    Zhan S B, Liu T, Ni S C, Xiao W B, Fu X 2013 Ordnance Mater. Sci. Engin. 36 78Google Scholar

    [14]

    程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2012 物理学报 61 134102Google Scholar

    Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102Google Scholar

    [15]

    Cheng Y Z, Gong R Z, Nie Y, Wang X 2012 Chin. Phys. B 21 127801Google Scholar

    [16]

    Zhang H B, Deng L W, Zhou P H, Zhang L, Cheng D M, Chen H Y, Liang D F, Deng L J 2013 J. Appl. Phys. 113 013903Google Scholar

    [17]

    Zhao J C, Cheng Y Z 2016 J. Electron. Mater. 45 5033Google Scholar

    [18]

    Cheng Y Z, He B, Zhao J C, Gong R Z 2017 J. Electron. Mater. 46 1293Google Scholar

    [19]

    Cheng Y Z, Cheng Z Z, Mao X S, Gong R Z 2017 Material 10 1241Google Scholar

    [20]

    Luo H, Cheng Y Z 2018 J. Electron. Mater. 47 323Google Scholar

    [21]

    Sun J B, Liu L Y, Dong G Y, Zhou J 2011 Opt. Express 19 21155Google Scholar

    [22]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photon. Techn. Lett. 26 111Google Scholar

    [23]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 Appl. Phys. A 115 1187Google Scholar

    [24]

    程用志 2015 博士学位论文 (武汉: 华中科技大学)

    Cheng Y Z 2015 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [25]

    Li W, Wu T L, Wang W, Guan J G, Zhai P C 2014 Appl. Phys. Lett. 104 022903

    [26]

    郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅 2015 物理学报 64 077801Google Scholar

    Guo F, Du H L, Qu S B, Xia S, Xu Z, Zhao J F, Zhang H M 2015 Acta Phys. Sin. 64 077801Google Scholar

    [27]

    Sun L K, Cheng H F, Zhou Y J, Wang J 2011 Appl. Phys. A 105 49Google Scholar

    [28]

    徐永顺, 别少伟, 江建军, 徐海兵, 万东, 周杰 2014 物理学报 63 205202Google Scholar

    Xu Y S, Bie S W, Jiang J J, Xu H B, Wan D, Zhou J 2014 Acta Phys. Sin. 63 205202Google Scholar

    [29]

    Hou Z L, Kong L B, Jin H B, Cao M S, Li X, Qi X 2012 Chin. Phys. Lett. 29 017701Google Scholar

  • 图 1  螺旋环-碳纤维复合吸波体结构示意图

    Fig. 1.  Structure schematic diagram of spiral-ring with carbon fiber composite microwave absorber.

    图 2  碳纤维损耗层复相对介电常数频谱

    Fig. 2.  Relative complex permittivity of carbon fiber.

    图 3  仿真模型边界条件与激励设置

    Fig. 3.  Settings of boundary conditions and incentive settings for the simulation model.

    图 4  双层金属螺旋环-碳纤维复合吸波体的反射损耗

    Fig. 4.  Reflection loss of double layers metal spiral-ring with carbon fiber composite microwave absorber.

    图 5  螺旋环结构参数对双层螺旋环-碳纤维复合吸波体反射损耗的影响 (a)初始线长; (b)线宽; (c)损耗层厚度

    Fig. 5.  Effects of structure parameters of spiral-ring on the reflection loss of double layers metal spiral-ring with carbon fiber composite microwave absorber: (a) Initial length of line; (b) width of line; (c) thickness of upper dielectric layer

    图 6  复合吸波体S参数的(a)幅值和(b)相位的频谱特性

    Fig. 6.  Spectrum feature of composite microwave absorber’s S parameter: (a) Amplitude; (b) phase

    图 7  复合吸波体的(a) 复阻抗Z、(b) 复介电常数、(c)复磁导率和(d)复折射率的频谱特性

    Fig. 7.  Spectrum feature of composite microwave absorber: (a) Complex impedance Z; (b) relative complex permittivity; (c) relative complex permeability; (d) complex refractive index

    图 8  电场强度E幅值分布俯视图 (a) f01 = 9.04 GHz; (b) f02 = 12.80 GHz; (c) f03 = 16.48 GHz; (d)等厚度有耗介质(f03 = 16.48 GHz)

    Fig. 8.  Top view of electric field amplitude E distribution: (a) f01 = 9.04 GHz; (b) f02 =12.80 GHz; (c) f03 = 16.48 GHz; (d) dielectric with dielectric loss with the same thickness (f03 = 16.48 GHz)

    图 9  表面电流密度矢量J分布俯视图 (a) f04 = 11.12 GHz; (b) f05 = 14.64 GHz

    Fig. 9.  Top view of distribution for surface current density J : (a) f04 = 11.12 GHz; (b) f05 = 14.64 GHz

    图 10  复合吸波体f0ifi (k = 1)的对比

    Fig. 10.  Comparison of f0i and fi (k = 1) .

    表 1  复合吸波体谐振频点的等效电路模型计算值

    Table 1.  Calculation results of resonance frequency of composite microwave absorber.

    编号i等效电磁参数谐振
    频点f0i/GHz
    相对介电
    常数εr
    等效电容器/电感线
    长度ai/mm
    修正因子k = 1时近似
    谐振频点fi/GHz
    修正因子
    k
    f0ifi
    相对误差
    19.042.2168.09.121.020.88%
    212.802.0546.511.660.83–8.91%
    316.481.9855.015.420.88–6.43%
    411.122.1107.010.680.92–3.96%
    514.642.0095.015.331.104.71%
    下载: 导出CSV
  • [1]

    Li J S, Huang H, Zhou Y J, Zhang C Y, Li Z T 2017 J. Mater. Res. 32 1213Google Scholar

    [2]

    熊益军, 王岩, 王强, 王春齐, 黄小忠, 张芬, 周丁 2018 物理学报 67 084202Google Scholar

    Xiong Y J, Wang Y, Wang Q, Wang C Q, Huang X Z, Zhang F, Zhou D 2018 Acta Phys. Sin. 67 084202Google Scholar

    [3]

    Luo H, Feng W L, Liao C W, Deng L W, Liu S, Zhang H B, Xiao P 2018 J. Appl. Phys. 123 104103Google Scholar

    [4]

    He J, Deng L W, Liu S, Yan S Q, Luo H, Li Y H, He L H, Huang S X 2017 J. Magn. Magn. Mater. 444 49Google Scholar

    [5]

    贺龙辉, 胡照文, 邓联文, 黄生祥, 刘胜, 贺君, 文瑞 2015 功能材料 46 23120Google Scholar

    He L H, Hu Z W, Deng L W, Huang S X, Liu S, He J, Wen R 2015 J. Funct. Mater. 46 23120Google Scholar

    [6]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [7]

    张勇, 段俊萍, 张文栋, 王万军, 张斌珍 2016 材料导报 30 157

    Zhang Y, Duan J P, Zhang W D, Wang W J, Zhag B Z 2016 Mater. Rev. 30 157

    [8]

    高海涛, 王建江, 许宝才, 李泽, 刘嘉玮 2017 材料导报 31 15Google Scholar

    Gao H T, Wang J J, Xu B C, Li Z, Liu J W 2017 Mater. Rev. 31 15Google Scholar

    [9]

    宋健, 李敏华, 董建峰 2017 材料导报 31 114Google Scholar

    Song J, Li M H, Dong J F 2017 Mater. Rev. 31 114Google Scholar

    [10]

    顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华 2011 物理学报 60 087802Google Scholar

    Gu C, Qu S B, Pei Z B, Xu Z, Lin B Q, Zhou H, Bai P, Gu W, Peng W D, Ma H 2011 Acta Phys. Sin. 60 087802Google Scholar

    [11]

    高军, 张浩, 曹祥玉, 杨欢欢, 杨群, 李文强 2015 西安电子科技大学学报 42 130Google Scholar

    Gao J, Zhang H, Cao X Y, Yang H H, Yang Q, Li W Q 2015 J. Xidian Univ. 42 130Google Scholar

    [12]

    刘凌云, 邹浩, 李珊, 程用志 2015 功能材料 46 20053Google Scholar

    Liu L Y, Zou H, Li S, Cheng Y Z 2015 J. Funct. Mater. 46 20053Google Scholar

    [13]

    占生宝, 刘涛, 倪受春, 肖文标, 付翔 2013 兵器材料科学与工程 36 78Google Scholar

    Zhan S B, Liu T, Ni S C, Xiao W B, Fu X 2013 Ordnance Mater. Sci. Engin. 36 78Google Scholar

    [14]

    程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2012 物理学报 61 134102Google Scholar

    Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102Google Scholar

    [15]

    Cheng Y Z, Gong R Z, Nie Y, Wang X 2012 Chin. Phys. B 21 127801Google Scholar

    [16]

    Zhang H B, Deng L W, Zhou P H, Zhang L, Cheng D M, Chen H Y, Liang D F, Deng L J 2013 J. Appl. Phys. 113 013903Google Scholar

    [17]

    Zhao J C, Cheng Y Z 2016 J. Electron. Mater. 45 5033Google Scholar

    [18]

    Cheng Y Z, He B, Zhao J C, Gong R Z 2017 J. Electron. Mater. 46 1293Google Scholar

    [19]

    Cheng Y Z, Cheng Z Z, Mao X S, Gong R Z 2017 Material 10 1241Google Scholar

    [20]

    Luo H, Cheng Y Z 2018 J. Electron. Mater. 47 323Google Scholar

    [21]

    Sun J B, Liu L Y, Dong G Y, Zhou J 2011 Opt. Express 19 21155Google Scholar

    [22]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photon. Techn. Lett. 26 111Google Scholar

    [23]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 Appl. Phys. A 115 1187Google Scholar

    [24]

    程用志 2015 博士学位论文 (武汉: 华中科技大学)

    Cheng Y Z 2015 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [25]

    Li W, Wu T L, Wang W, Guan J G, Zhai P C 2014 Appl. Phys. Lett. 104 022903

    [26]

    郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅 2015 物理学报 64 077801Google Scholar

    Guo F, Du H L, Qu S B, Xia S, Xu Z, Zhao J F, Zhang H M 2015 Acta Phys. Sin. 64 077801Google Scholar

    [27]

    Sun L K, Cheng H F, Zhou Y J, Wang J 2011 Appl. Phys. A 105 49Google Scholar

    [28]

    徐永顺, 别少伟, 江建军, 徐海兵, 万东, 周杰 2014 物理学报 63 205202Google Scholar

    Xu Y S, Bie S W, Jiang J J, Xu H B, Wan D, Zhou J 2014 Acta Phys. Sin. 63 205202Google Scholar

    [29]

    Hou Z L, Kong L B, Jin H B, Cao M S, Li X, Qi X 2012 Chin. Phys. Lett. 29 017701Google Scholar

  • [1] 董宜雷, 陈诚, 林书玉. 基于传输矩阵法的任意变厚度环型压电超声换能器. 物理学报, 2023, 72(5): 054304. doi: 10.7498/aps.72.20222110
    [2] 谢冰鸿, 徐国凯, 肖绍球, 喻忠军, 朱大立. 非线性磁电换能器模型的谐振磁电效应分析及其输出功率优化. 物理学报, 2023, 72(11): 117501. doi: 10.7498/aps.72.20222277
    [3] 宁仁霞, 黄旺, 王菲, 孙剑, 焦铮. 双明模耦合的双波段类电磁诱导透明研究. 物理学报, 2022, 71(1): 014201. doi: 10.7498/aps.71.20211312
    [4] 宁仁霞, 黄旺, 王菲, 孙剑, 焦铮. 双明模耦合的双波段类电磁诱导透明研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211312
    [5] 陈明东, 揭晓华, 张海燕. 碳纳米管复合吸波涂层微波吸收性能的模拟计算. 物理学报, 2014, 63(6): 066103. doi: 10.7498/aps.63.066103
    [6] 陈姝媛, 阮存军, 王勇. 带状注速调管多间隙扩展互作用输出腔等效电路的研究. 物理学报, 2014, 63(2): 028402. doi: 10.7498/aps.63.028402
    [7] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究. 物理学报, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [8] 张小丽, 林书玉, 付志强, 王勇. 弯曲振动薄圆盘的共振频率和等效电路参数研究. 物理学报, 2013, 62(3): 034301. doi: 10.7498/aps.62.034301
    [9] 胡丰伟, 包伯成, 武花干, 王春丽. 荷控忆阻器等效电路分析模型及其电路特性研究. 物理学报, 2013, 62(21): 218401. doi: 10.7498/aps.62.218401
    [10] 吴超, 吕绪良, 曾朝阳, 贾其. 基于阻抗模拟的等效电磁参数研究. 物理学报, 2013, 62(5): 054101. doi: 10.7498/aps.62.054101
    [11] 王秀芝, 高劲松, 徐念喜. 利用等效电路模型快速分析加载集总元件的微型化频率选择表面. 物理学报, 2013, 62(20): 207301. doi: 10.7498/aps.62.207301
    [12] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [13] 胡永刚, 夏风, 肖建中, 雷超, 李向东. 基于阻抗模型解析的氧化锆固体电解质组织结构演变模型. 物理学报, 2012, 61(9): 098102. doi: 10.7498/aps.61.098102
    [14] 周静, 刘存金, 李儒, 陈文. 异质界面对Ca(Mg1/3Nb2/3)O3/CaTiO3叠层薄膜结构和介电性能的影响. 物理学报, 2012, 61(6): 067401. doi: 10.7498/aps.61.067401
    [15] 白春江, 李建清, 胡玉禄, 杨中海, 李斌. 利用等效电路模型计算耦合腔行波管注-波互作用. 物理学报, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [16] 包伯成, 胡文, 许建平, 刘中, 邹凌. 忆阻混沌电路的分析与实现. 物理学报, 2011, 60(12): 120502. doi: 10.7498/aps.60.120502
    [17] 刘 鹏, 贺 颖, 李 俊, 朱刚强, 边小兵. 添加Nb对CaCu3Ti4O12陶瓷介电性能的影响. 物理学报, 2007, 56(9): 5489-5493. doi: 10.7498/aps.56.5489
    [18] 辛宏梁, 袁望治, 程金科, 林 宏, 阮建中, 赵振杰. NiFeCoP/BeCu复合结构丝的巨磁阻抗效应和磁化频率特性. 物理学报, 2007, 56(7): 4152-4157. doi: 10.7498/aps.56.4152
    [19] 李洪奇. 介观压电石英晶体等效电路的量子化. 物理学报, 2005, 54(3): 1361-1365. doi: 10.7498/aps.54.1361
    [20] 王均宏. 脉冲电压电流沿偶极天线传播过程的等效电路法分析. 物理学报, 2000, 49(9): 1696-1701. doi: 10.7498/aps.49.1696
计量
  • 文章访问数:  11251
  • PDF下载量:  293
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-03
  • 修回日期:  2019-03-05
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-05

/

返回文章
返回