搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双明模耦合的双波段类电磁诱导透明研究

宁仁霞 黄旺 王菲 孙剑 焦铮

引用本文:
Citation:

双明模耦合的双波段类电磁诱导透明研究

宁仁霞, 黄旺, 王菲, 孙剑, 焦铮

Electromagnetic induction-like transparency in dual-band with dual-bright mode coupling

Ning Ren-Xia, Huang Wang, Wang Fei, Sun Jian, Jiao Zheng
PDF
HTML
导出引用
  • 本文设计了一种双层开口方环和双C型结构的超材料结构, 在太赫兹波段具有双波段的类电磁诱导透明效应. 该结构在1.438 THz和1.699 THz处出现透射峰. 通过电磁场分布分析讨论产生双频带电磁诱导透明的原因, 利用等效电路分析方法进一步解释了超材料中的类电磁诱导透明效应. 研究了超材料开口方环的开口大小和双C型结构距离以及改变入射角度时对透射窗口的影响, 结果发现在改变入射角度时, 所设计材料透射谱线变化较大, 表现出对角度的高敏感性. 同时, 改变环境的介电常数可以得到该结构的透射谱产生明显的红移. 以上研究结果表明该结构在角度滤波器, 折射率传感器等器件中有潜在的应用.
    In this paper, a metamaterial structure with a double-layer split square ring and a double C-shaped structure is designed, which has dual-band electromagnetically induced transparency effects in the terahertz band. This structure has transmission peaks at 1.438 THz and 1.699 THz. Through the analysis of the surface current distribution, the reasons for the dual-band electromagnetically induced transparency are discussed. The effect of the designed metamaterial on the transmission window is studied when the opening size of the open square ring and the distance of the double C-shaped structure and the incident angle are changed. At an incident angle, the transmission spectrum of the designed material changes greatly, implying that it is highly sensitive to angle. The research results show that the structure has potential applications in sensors and angle filters.
      通信作者: 宁仁霞, nrxxiner@163.com
    • 基金项目: 全国大学生创新创业训练项目(批准号: 202010375030)、安徽省高校自然科学项目(批准号: KJHS2020B07, KJ2020A0684)和雷达成像与微波光子技术教育部重点实验室开放课题(批准号: NJ20210006)资助的课题
      Corresponding author: Ning Ren-Xia, nrxxiner@163.com
    • Funds: Project supported by the Innovation and Entrepreneurship Training Program for College Students (Grant No. 202010375030), the Natural Science Research Project of Anhui Province Education Department (Grant Nos. KJHS2020B07, KJ2020A0684), and the Project of Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing University of Aeronautics and Astronautics), Ministry of Education, China (Grant No. NJ20210006)
    [1]

    Zuo Z W, Ling D B, Sheng, L. Xing, D. Y. 2013 Phys. Lett. A 377 2909Google Scholar

    [2]

    Zhukovsky S V, Kidwai O, SIPE J E. 2013 Opt. Express 21 14982Google Scholar

    [3]

    杨曙辉, 陈迎潮, 王文松, 康劲, 贺学忠 2015 电波科学学报 30 834

    Yang X H, Chen Y C, Wang W S, Kang J, He X Z 2015 Chin. J. Radio Sci. 30 834

    [4]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett 100 207402Google Scholar

    [5]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [6]

    Hu S, Yang H L, Han S, Huang X J, Xiao B X 2015 J. Appl. Phys. 117 043107Google Scholar

    [7]

    Hu J, Lang T T, Hong Z, Shen C Y, Shi G H 2018 J Lightwave Technol 36 2083Google Scholar

    [8]

    Affolderbach C, Knappe S, Wynands R, Taĭchenachev A V, Yudin V I 2002 Phys. Rev. A 65 043810Google Scholar

    [9]

    Zhang S, Hu Y, Lin G, Niu Y, Xia K, Gong J, Gong S 2018 Nat. Photon 12 744Google Scholar

    [10]

    Papasimakis, N. Fedotov, V. A. Zheludev, N. I. Prosvirnin, S. L. 2008 Phys. Rev. Lett. 101 253903Google Scholar

    [11]

    Na B, Shi J H, Guan C Y, Wang Z P 2013 Chin. Opt. Lett. 11 111602Google Scholar

    [12]

    Zhu L, Li T C, Zhang Z D, Guo J, Liang D, Zhang D Q 2020 Appl. Phys. A 126 308Google Scholar

    [13]

    Zhao Z, Gu Z, Ako R T, Zhao H, Sriram S 2020 Opt. express 28 15573Google Scholar

    [14]

    Smith D R, Pendry J B, Wiltshire M C 2004 Science 305 788Google Scholar

    [15]

    ehera S, Kim K 2019 J. Phys. D: Appl. Phys. 52 275106Google Scholar

    [16]

    Jia Z P, Huang L, Su J B, Tang B 2021 J. Lightwave Technol. 395 1544Google Scholar

    [17]

    Shen S M, Liu Y L, Liu W Q, Tan Q L, Xiong J J, Zhang W D 2018 Mater. Res. Express 5 125804Google Scholar

    [18]

    Srivastava Y K, Cong L, Singh R 2017 Appl. Phys. Lett. 111 201101Google Scholar

    [19]

    Wu X J, Quan B G, Pan X C, Xu X L, Lu X C, Gu C Z, Wang L 2013 Biosens. Bioelectron 42 626Google Scholar

    [20]

    Yan X, Yang M S, Zhang Z, Liang L J, Wei D Q, Wang M, Zhang M J, Wang T, Liu L H, Xie J H, Yao J Q 2019 Biosens. Bioelectron. 126 485Google Scholar

    [21]

    Chen M M, Xiao Z Y, Lu X J, Lv F, Zhou Y J 2020 Carbon 159 273Google Scholar

    [22]

    霍红, 延凤平, 王伟, 杜雪梅, 郝梦真 2020 中国激光 47 330

    Huo H, Yan F P, Wang W, Du X M, Hao M Z 2020 Chin. J. Lasers 47 330

    [23]

    刘伟, 梁兰菊, 闫昕, 杨其利2020 激光杂志 41 53

    Liu W, Liang L J, Yan X, Yang Q L 2020 Laser J. 41 53 (in Chinese)

    [24]

    王鑫, 王俊林 2020 物理学报 70 038102Google Scholar

    Wang X, Wang J L 2020 Acta Phys. Sin. 70 038102Google Scholar

    [25]

    Zhong M. 2020 Opt. Mater. 106 110019Google Scholar

    [26]

    Ma Y, Li D, Chen Z, Qian H W, Ning R X 2020 J. Opt. 22 055101Google Scholar

    [27]

    Li G F, Yang J B, Zhang Z J, Wen K, Tao Y Y, Han Y X, Zhang Z R 2020 Appl. Sci. 10 3033Google Scholar

    [28]

    Zhu L, Zhao X, Miao F J, Bablu K Ghosh, Dong L, Tao B R, Meng F Y, Li W N 2019 Opt. Express 27 12163Google Scholar

    [29]

    李海明 2016 博士学位论文 (南京: 南京航空航天大学)

    Li H M 2016 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [30]

    陈徐 2018 博士学位论文 (西安: 中国科学院大学(中国科学院西安光学精密机械研究所)

    Chen X 2018 Ph. D. Dissertation (Xi'an: University of Chinese Academy of Sciences (Xi 'an Institute of Optics and Fine Mechanics, CAS) ) (in Chinese)

    [31]

    刘晨曦 2019 博士学位论文 (长沙: 国防科技大学)

    Liu C X 2019 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [32]

    张永刚 2016 博士学位论文 (南京: 南京大学)

    Zhang Y G 2016 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [33]

    王秀芝, 高劲松, 徐念喜 2013 物理学报 64 147307Google Scholar

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 64 147307Google Scholar

    [34]

    Abdulkarim Y I, Deng L, Luo H, Huang S, Karaaslan M, Altıntaş O, Bakır M, Muhammadsharif F F, Awl H N, Sabah C, Al-badri K S L 2020 J. Mater. Res. Technol. 9 10291Google Scholar

    [35]

    Lim D, Lee D, Lim S 2016 Sci. Rep. 6 39686Google Scholar

  • 图 1  双明模耦合的单元结构图 (a) 由顶层金属层和底层非金属层构成的超材料结构的三维视图; (b) 所设计超材料结构的正视图; (c) 所设计超材料的侧视图

    Fig. 1.  Unit structure diagram of bright-bright mode coupling: (a) 3D view of metamaterial structure consisting of top metal layer and bottom nonmetal layer; (b) view of the designed metamaterial structure; (c) side view of the designed metamaterial structure.

    图 2  3种结构 (a) I, (b) II和 (c) III的透射频谱图对比及结构 I, II的对应频点电场分布

    Fig. 2.  Comparison of transmission spectra of three structures (a) I, (b) II and (c) III, and corresponding frequency point electric field distribution of structures I and II.

    图 3  结构Ⅲ条件下各透射峰和透射谷处电磁场分布图 (a)−(e)为电场分布; (f)−(j)为磁场分布图

    Fig. 3.  Electromagnetic field distribution on transmission peaks and transmission valleys of the structure III. (a)−(e) are electric field distribution; (f)−(j) is the magnetic field distribution.

    图 4  (a) 电磁诱导透明的等效电路模型; (b) 两种不同方法得到电磁诱导透明效应

    Fig. 4.  (a) Equivalent circuit model of electromagnetically induced transparency; (b) electromagnetically induced transparency effect is obtained by two different methods of ADS and FDTD.

    图 5  改变空气槽的宽度g时透射率随频率变化情况

    Fig. 5.  Variation of transmission with gap width g of the structure II.

    图 6  内环结构水平开口大小g1对EIT效应的影响

    Fig. 6.  Influence of width g1 of the horizontal gap of the structure I on EIT effect.

    图 7  内环结构垂直开口大小g2对EIT效应的影响

    Fig. 7.  Influence of width g2 of the vertical gap of the structure I on EIT effect.

    图 8  不同入射角度所对应透射谱的变化

    Fig. 8.  Variation of transmission spectrum of different incident angles.

    图 9  不同背景环境下透射窗的对比

    Fig. 9.  Comparison of transmission windows in different background environments permittivity.

  • [1]

    Zuo Z W, Ling D B, Sheng, L. Xing, D. Y. 2013 Phys. Lett. A 377 2909Google Scholar

    [2]

    Zhukovsky S V, Kidwai O, SIPE J E. 2013 Opt. Express 21 14982Google Scholar

    [3]

    杨曙辉, 陈迎潮, 王文松, 康劲, 贺学忠 2015 电波科学学报 30 834

    Yang X H, Chen Y C, Wang W S, Kang J, He X Z 2015 Chin. J. Radio Sci. 30 834

    [4]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett 100 207402Google Scholar

    [5]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [6]

    Hu S, Yang H L, Han S, Huang X J, Xiao B X 2015 J. Appl. Phys. 117 043107Google Scholar

    [7]

    Hu J, Lang T T, Hong Z, Shen C Y, Shi G H 2018 J Lightwave Technol 36 2083Google Scholar

    [8]

    Affolderbach C, Knappe S, Wynands R, Taĭchenachev A V, Yudin V I 2002 Phys. Rev. A 65 043810Google Scholar

    [9]

    Zhang S, Hu Y, Lin G, Niu Y, Xia K, Gong J, Gong S 2018 Nat. Photon 12 744Google Scholar

    [10]

    Papasimakis, N. Fedotov, V. A. Zheludev, N. I. Prosvirnin, S. L. 2008 Phys. Rev. Lett. 101 253903Google Scholar

    [11]

    Na B, Shi J H, Guan C Y, Wang Z P 2013 Chin. Opt. Lett. 11 111602Google Scholar

    [12]

    Zhu L, Li T C, Zhang Z D, Guo J, Liang D, Zhang D Q 2020 Appl. Phys. A 126 308Google Scholar

    [13]

    Zhao Z, Gu Z, Ako R T, Zhao H, Sriram S 2020 Opt. express 28 15573Google Scholar

    [14]

    Smith D R, Pendry J B, Wiltshire M C 2004 Science 305 788Google Scholar

    [15]

    ehera S, Kim K 2019 J. Phys. D: Appl. Phys. 52 275106Google Scholar

    [16]

    Jia Z P, Huang L, Su J B, Tang B 2021 J. Lightwave Technol. 395 1544Google Scholar

    [17]

    Shen S M, Liu Y L, Liu W Q, Tan Q L, Xiong J J, Zhang W D 2018 Mater. Res. Express 5 125804Google Scholar

    [18]

    Srivastava Y K, Cong L, Singh R 2017 Appl. Phys. Lett. 111 201101Google Scholar

    [19]

    Wu X J, Quan B G, Pan X C, Xu X L, Lu X C, Gu C Z, Wang L 2013 Biosens. Bioelectron 42 626Google Scholar

    [20]

    Yan X, Yang M S, Zhang Z, Liang L J, Wei D Q, Wang M, Zhang M J, Wang T, Liu L H, Xie J H, Yao J Q 2019 Biosens. Bioelectron. 126 485Google Scholar

    [21]

    Chen M M, Xiao Z Y, Lu X J, Lv F, Zhou Y J 2020 Carbon 159 273Google Scholar

    [22]

    霍红, 延凤平, 王伟, 杜雪梅, 郝梦真 2020 中国激光 47 330

    Huo H, Yan F P, Wang W, Du X M, Hao M Z 2020 Chin. J. Lasers 47 330

    [23]

    刘伟, 梁兰菊, 闫昕, 杨其利2020 激光杂志 41 53

    Liu W, Liang L J, Yan X, Yang Q L 2020 Laser J. 41 53 (in Chinese)

    [24]

    王鑫, 王俊林 2020 物理学报 70 038102Google Scholar

    Wang X, Wang J L 2020 Acta Phys. Sin. 70 038102Google Scholar

    [25]

    Zhong M. 2020 Opt. Mater. 106 110019Google Scholar

    [26]

    Ma Y, Li D, Chen Z, Qian H W, Ning R X 2020 J. Opt. 22 055101Google Scholar

    [27]

    Li G F, Yang J B, Zhang Z J, Wen K, Tao Y Y, Han Y X, Zhang Z R 2020 Appl. Sci. 10 3033Google Scholar

    [28]

    Zhu L, Zhao X, Miao F J, Bablu K Ghosh, Dong L, Tao B R, Meng F Y, Li W N 2019 Opt. Express 27 12163Google Scholar

    [29]

    李海明 2016 博士学位论文 (南京: 南京航空航天大学)

    Li H M 2016 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [30]

    陈徐 2018 博士学位论文 (西安: 中国科学院大学(中国科学院西安光学精密机械研究所)

    Chen X 2018 Ph. D. Dissertation (Xi'an: University of Chinese Academy of Sciences (Xi 'an Institute of Optics and Fine Mechanics, CAS) ) (in Chinese)

    [31]

    刘晨曦 2019 博士学位论文 (长沙: 国防科技大学)

    Liu C X 2019 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [32]

    张永刚 2016 博士学位论文 (南京: 南京大学)

    Zhang Y G 2016 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [33]

    王秀芝, 高劲松, 徐念喜 2013 物理学报 64 147307Google Scholar

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 64 147307Google Scholar

    [34]

    Abdulkarim Y I, Deng L, Luo H, Huang S, Karaaslan M, Altıntaş O, Bakır M, Muhammadsharif F F, Awl H N, Sabah C, Al-badri K S L 2020 J. Mater. Res. Technol. 9 10291Google Scholar

    [35]

    Lim D, Lee D, Lim S 2016 Sci. Rep. 6 39686Google Scholar

  • [1] 孙占硕, 王鑫, 王俊林, 樊勃, 张宇, 冯瑶. 基于类电磁诱导透明的双频段太赫兹超材料的传感和慢光特性. 物理学报, 2022, 71(13): 138101. doi: 10.7498/aps.71.20212163
    [2] 陈永强, 许光远, 王军, 方宇, 吴幸智, 丁亚琼, 孙勇. 基于非对称微波光子晶体的电磁二极管. 物理学报, 2022, 71(3): 034701. doi: 10.7498/aps.71.20211291
    [3] 陈永强, 许光远, 王军, 方宇, 吴幸智, 丁亚琼, 孙勇. 基于非对称微波光子晶体的电磁二极管. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211291
    [4] 宁仁霞, 黄旺, 王菲, 孙剑, 焦铮. 双明模耦合的双波段类电磁诱导透明研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211312
    [5] 李宇涵, 邓联文, 罗衡, 贺龙辉, 贺君, 徐运超, 黄生祥. 双层螺旋环超表面复合吸波体等效电路模型及微波损耗机制. 物理学报, 2019, 68(9): 095201. doi: 10.7498/aps.68.20181960
    [6] 杨鹏, 韩天成. 极化控制的双波段宽带红外吸收器研究. 物理学报, 2018, 67(10): 107801. doi: 10.7498/aps.67.20172716
    [7] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [8] 陈姝媛, 阮存军, 王勇. 带状注速调管多间隙扩展互作用输出腔等效电路的研究. 物理学报, 2014, 63(2): 028402. doi: 10.7498/aps.63.028402
    [9] 张小丽, 林书玉, 付志强, 王勇. 弯曲振动薄圆盘的共振频率和等效电路参数研究. 物理学报, 2013, 62(3): 034301. doi: 10.7498/aps.62.034301
    [10] 胡丰伟, 包伯成, 武花干, 王春丽. 荷控忆阻器等效电路分析模型及其电路特性研究. 物理学报, 2013, 62(21): 218401. doi: 10.7498/aps.62.218401
    [11] 吴超, 吕绪良, 曾朝阳, 贾其. 基于阻抗模拟的等效电磁参数研究. 物理学报, 2013, 62(5): 054101. doi: 10.7498/aps.62.054101
    [12] 丁敏, 薛晖, 吴博, 孙兵兵, 刘政, 黄志祥, 吴先良. 基于电磁超材料的两种等效参数提取算法的比较分析. 物理学报, 2013, 62(4): 044218. doi: 10.7498/aps.62.044218
    [13] 白春江, 李建清, 胡玉禄, 杨中海, 李斌. 利用等效电路模型计算耦合腔行波管注-波互作用. 物理学报, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [14] 苏妍妍, 龚伯仪, 赵晓鹏. 基于双负介质结构单元的零折射率超材料. 物理学报, 2012, 61(8): 084102. doi: 10.7498/aps.61.084102
    [15] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器. 物理学报, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [16] 赵延, 相建凯, 李飒, 赵晓鹏. 基于双鱼网结构的可见光波段超材料. 物理学报, 2011, 60(5): 054211. doi: 10.7498/aps.60.054211
    [17] 付非亚, 陈微, 周文君, 刘安金, 邢名欣, 王宇飞, 郑婉华. 纳米三明治结构光子超材料中电磁场振荡行为研究. 物理学报, 2010, 59(12): 8579-8583. doi: 10.7498/aps.59.8579
    [18] 相建凯, 马忠洪, 赵延, 赵晓鹏. 可见光波段超材料的平面聚焦效应. 物理学报, 2010, 59(6): 4023-4029. doi: 10.7498/aps.59.4023
    [19] 李洪奇. 介观压电石英晶体等效电路的量子化. 物理学报, 2005, 54(3): 1361-1365. doi: 10.7498/aps.54.1361
    [20] 王均宏. 脉冲电压电流沿偶极天线传播过程的等效电路法分析. 物理学报, 2000, 49(9): 1696-1701. doi: 10.7498/aps.49.1696
计量
  • 文章访问数:  4211
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-15
  • 修回日期:  2021-09-22
  • 上网日期:  2021-12-27
  • 刊出日期:  2022-01-05

/

返回文章
返回