-
鉴于紫外探测器在诸多领域的重要应用, 探寻自供电型探测器以及挖掘其内在运行机理显得尤为关键. 本文制备的Ga2O3/Al0.1Ga0.9N异质结紫外探测器能够实现对254 nm波长(UVC波段)和365 nm(UVA波段)波长紫外光的敏感探测, 并在不同方向的偏压驱动下能够实现耗尽模式和光电导模式的光探测. 这里介绍的基于Ga2O3/Al0.1Ga0.9N异质结的双波段、双模式紫外光电探测器具有理想的暗电流和光响应特性; 在5和–5 V偏压下, 在254 nm光照射下的光响应度分别为2.09和66.32 mA/W, 在365 nm光照射下的光响应度分别为0.22和34.75 mA/W. 并且仅在内建电场的作用下能够自供电运行, 对254和365 nm波长紫外光的光响应度为0.13和0.01 mA/W. 进一步, 除对材料与器件性能的表征与解析, 本文还从异质结探测器的运行机理上分析了其双波段与双模式探测特性.The deep-ultraviolet (DUV) photodetectors (PDs) have important applications in lots of fields. Thus, developing self-powered DUV PDs and excavating the inherent mechanism seem seriously crucial to achieving further actual applications. The construction of heterojunction can lead to many desired characteristics in optoelectronic devices. In the field of DUV photodetection, Ga2O3 has been a popular subject for constructing DUV PDs. So, it is necessary to develop self-powered Ga2O3-based DUV PDs through fabricating its heterogeneous structure. Therefore, in this work, the Ga2O3/Al0.1Ga0.9N heterojunction DUV PD is fabricated and discussed, which can achieve 254 and 365 nm DUV light photodetection. At positive voltages and negative voltages, the heterojunction PD can operate in a photoconductive mode or a depletion mode, respectively. In view of the PD performance, it displays decent dark current and DUV photoresponses. At voltage of 5 and –5 V, under 254 nm DUV light illumination, the photoresponsivity (R) is 2.09 and 66.32 mA/W, respectively, while under 365 nm DUV light illumination, R is 0.22 and 34.75 mA/W, respectively. In addition, under the built-in electric field (Ebuilt-in), R is 0.13 and 0.01 mA/W for 254 nm and 365 nm DUV light illumination, respectively. In all, the fabricated heterojunction PD displays promising prospects in the coming next-generation semiconductor photodetection technology. The results in this work indicate the potential of Ga2O3/Al0.1Ga0.9N heterojunction with high performance DUV photodetection. Furthermore, except for the characterizations of the materials and photodetector, in the end of this paper, the operating mechanism of the dual-band dual-mode heterojunction PD is analyzed through its heterogeneous energy-band diagram. It is concluded that the illustrated dual-band dual-mode Ga2O3/Al0.1Ga0.9N heterojunction can be sensitive to UVA waveband and UVC waveband in the electromagnetic spectrum, extending its photodetection region. And, the dual-mode (photoconductive mode and depletion mode) photodetection indicates two kinds of carrier transports in one PD, which can be attributed to the successful construction of the N-N tomo-type Ga2O3/Al0.1Ga0.9N heterojunction.
-
Keywords:
- heterojunction /
- deep-ultraviolet detection /
- dual-band /
- dual-mode
[1] Chen H, Liu K, Hu L, Al-Ghamdi A A, Fang X 2015 Mater. Today 18 493Google Scholar
[2] Shi L, Nihtianov S 2012 IEEE Sensors J. 12 2453Google Scholar
[3] Monroy E, Omnes F, Calle F 2003 Semicond. Sci. Technol. 18 R33Google Scholar
[4] Pearton S J, Yang J, Cary IV P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar
[5] Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar
[6] Higashiwaki M 2021 Phys. Status Solidi RRL 15 2100357Google Scholar
[7] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 物理学报 71 208501Google Scholar
Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar
[8] Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar
[9] Qian L, Li W, Gu Z, Tian J, Huang X, Lai P T, Zhang W 2022 Adv. Opt. Mater. 10 2102055Google Scholar
[10] Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C, Li W, Li P, Tang W 2019 J. Mater. Chem. C 7 13920Google Scholar
[11] Liu Z, Du L, Zhang S, Li L, Xi Z, Tang J, Fang J, Zhang M, Yang L, Li S, Li P, Guo Y, Tang W 2022 IEEE Trans. Electron Devices 69 5595Google Scholar
[12] Liu Z, Zhi Y, Zhang M, Yang L, Li S, Yan Z, Zhang S, Guo D, Li P, Guo Y, Tang W 2022 Chin. Phys. B 31 088503Google Scholar
[13] Kroemer H 1963 Proc. IEEE 51 1782Google Scholar
[14] Robertson J 2000 J. Vac. Sci. Technol., B 18 1785Google Scholar
[15] Liu Z, Liu Y, Wang X, Li W, Zhi Y, Wang X, Li P, Tang W 2019 J. Appl. Phys. 126 045707Google Scholar
[16] Chen Y, Yang X, Zhang C, He G, Chen X, Qiao Q, Zang J, Dou W, Sun P, Deng Y, Dong L, Shan C 2022 Nano Lett. 22 4888Google Scholar
[17] Liu Z, Zhang S, Zhi Y, Li S, Yan Z, Chu X, Bian A, Li P, Tang W 2021 J. Phys. D: Appl. Phys. 54 195104Google Scholar
[18] Qi X, Yue J, Ji X, Liu Z, Li S, Yan Z, Zhang M, Yang L, Li P, Guo D, Guo Y, Tang W 2022 Thin Solid Films 757 139397Google Scholar
[19] Zheng Z, Wang W, Wu F, Wang Z, Shan M, Zhao Y, Liu W, Jian P, Dai J, Lu H, Chen C 2022 Opt. Express 30 21822Google Scholar
[20] Gao A, Jiang W, Ma G, Liu Z, Li S, Yan Z, Sun W, Zhang S, Tang W 2022 Curr. Appl. Phys. 33 20Google Scholar
[21] Ma G, Jiang W, Sun W, Yan Z, Sun B, Li S, Zhang M, Wang X, Gao A, Dai J, Liu Z, Li P, Tang W 2021 Phys. Scr. 96 125823Google Scholar
[22] Sun W, Sun B, Li S, Ma G, Gao A, Jiang W, Zhang M, Li P, Liu Z, Tang W 2022 Chin. Phys. B 31 024205Google Scholar
[23] Nakagomi S, Sato T, Takahashi Y, Kokubun Y 2015 Sens. Actuators, A 232 208Google Scholar
[24] Weng W Y, Hsueh T J, Chang S J, Huang G J, Hsueh H T 2011 IEEE Sensors J. 11 1491Google Scholar
[25] 王兰喜, 陈学康, 王瑞, 曹生珠 2009 真空与低温 15 5Google Scholar
Wang L X, Chen X K, Wang D, Cao S Z 2009 Vac. Cryogenics 15 5Google Scholar
[26] Razeghi M, Rogalski A 1996 J. Appl. Phys. 79 7433Google Scholar
[27] Tung R T 2014 Appl. Phys. Rev. 1 011304Google Scholar
[28] Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z, Tang W 2020 J. Phys. D: Appl. Phys. 53 085105Google Scholar
[29] Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar
[30] Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071Google Scholar
[31] Xu X, Chen J, Cai S, Long Z, Zhang Y, Su L, He S, Tang C, Liu P, Peng H, Fang X 2018 Adv. Mater. 30 1803165Google Scholar
[32] Garrido J A, Monroy E, Izpura I, Muñoz E 1998 Semicond. Sci. Technol. 13 563Google Scholar
[33] Grabowski S P, Schneider M, Nienhaus H, Mönch W, Dimitrov R, Ambacher O, Stutzmann M 2001 Appl. Phys. Lett. 78 2503Google Scholar
[34] Ma J, Zheng M, Chen C, Zhu Z, Zheng X, Chen Z, Guo Y, Liu C, Yan Y, Fang G 2018 Adv. Funct. Mater. 28 1804128Google Scholar
-
图 5 (a) 正向偏压下、(b) 反向偏压下254 nm波长光辐照下的I-t特性曲线; (c) 正向偏压下、(d) 反向偏压下365 nm波长光辐照下的I-t特性曲线
Fig. 5. The I-t curves at (a) positive voltages and (b) negative voltages under the illuminations of 254 nm UV light. The I-t curvesat (c) positive voltages and (d) negative voltages under the illuminations of 365 nm UV light
图 6 254 nm波长紫外光辐照下, 施加 (a) 正向偏压与 (b) 负偏压下的光电流与光强的关系图. 365 nm波长紫外光辐照下, 施加 (c) 正向偏压与 (d) 负偏压下的光电流与光强的关系图
Fig. 6. The intensity dependent photocurrent at (a) positive voltages and (b) negative voltages under illumination of 254 nm UV light. The intensity dependent photocurrent at (c) positive voltages and (d) negative voltages under illumination of 365 nm UV light.
表 1 双波段、双模式Ga2O3/Al0.1Ga0.9N异质结光电探测器的性能总结
Table 1. Summary on the performance of the dual-band, dual-mode heterojunction photodetector.
波长254 nm 波长365 nm 偏压/V R /(mA·W–1) D*/Jones EQE /% R /(mA·W–1) D*/Jones EQE/% –5 2.09 1.60 $ \times $ 1011 1.01 0.22 1.69 $ \times $ 1010 0.075 –4 2.02 1.80 $ \times $ 1011 0.97 0.16 1.44 $ \times $ 1010 0.055 –3 1.17 1.92 $ \times $ 1011 0.84 0.13 1.39 $ \times $ 1010 0.044 –2 1.49 3.00 $ \times $ 1011 0.72 0.10 2.02 $ \times $ 1010 0.034 –1 1.16 1.52 $ \times $ 1011 0.66 0.07 9.53 $ \times $ 109 0.025 0 0.13 9.37 $ \times $ 109 0.06 0.01 6.18 $ \times $ 108 0.003 1 8.47 4.48 $ \times $ 1011 4.07 0.88 4.68 $ \times $ 1010 0.300 2 19.28 7.92 $ \times $ 1012 9.25 2.08 8.54 $ \times $ 1010 0.707 3 33.81 1.06 $ \times $ 1012 16.23 5.32 1.66 $ \times $ 1011 1.808 4 49.62 1.25 $ \times $ 1012 23.98 14.24 3.56 $ \times $ 1011 4.841 5 66.32 1.41 $ \times $ 1012 31.84 34.75 7.42 $ \times $ 1011 11.815 -
[1] Chen H, Liu K, Hu L, Al-Ghamdi A A, Fang X 2015 Mater. Today 18 493Google Scholar
[2] Shi L, Nihtianov S 2012 IEEE Sensors J. 12 2453Google Scholar
[3] Monroy E, Omnes F, Calle F 2003 Semicond. Sci. Technol. 18 R33Google Scholar
[4] Pearton S J, Yang J, Cary IV P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar
[5] Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar
[6] Higashiwaki M 2021 Phys. Status Solidi RRL 15 2100357Google Scholar
[7] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 物理学报 71 208501Google Scholar
Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar
[8] Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar
[9] Qian L, Li W, Gu Z, Tian J, Huang X, Lai P T, Zhang W 2022 Adv. Opt. Mater. 10 2102055Google Scholar
[10] Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C, Li W, Li P, Tang W 2019 J. Mater. Chem. C 7 13920Google Scholar
[11] Liu Z, Du L, Zhang S, Li L, Xi Z, Tang J, Fang J, Zhang M, Yang L, Li S, Li P, Guo Y, Tang W 2022 IEEE Trans. Electron Devices 69 5595Google Scholar
[12] Liu Z, Zhi Y, Zhang M, Yang L, Li S, Yan Z, Zhang S, Guo D, Li P, Guo Y, Tang W 2022 Chin. Phys. B 31 088503Google Scholar
[13] Kroemer H 1963 Proc. IEEE 51 1782Google Scholar
[14] Robertson J 2000 J. Vac. Sci. Technol., B 18 1785Google Scholar
[15] Liu Z, Liu Y, Wang X, Li W, Zhi Y, Wang X, Li P, Tang W 2019 J. Appl. Phys. 126 045707Google Scholar
[16] Chen Y, Yang X, Zhang C, He G, Chen X, Qiao Q, Zang J, Dou W, Sun P, Deng Y, Dong L, Shan C 2022 Nano Lett. 22 4888Google Scholar
[17] Liu Z, Zhang S, Zhi Y, Li S, Yan Z, Chu X, Bian A, Li P, Tang W 2021 J. Phys. D: Appl. Phys. 54 195104Google Scholar
[18] Qi X, Yue J, Ji X, Liu Z, Li S, Yan Z, Zhang M, Yang L, Li P, Guo D, Guo Y, Tang W 2022 Thin Solid Films 757 139397Google Scholar
[19] Zheng Z, Wang W, Wu F, Wang Z, Shan M, Zhao Y, Liu W, Jian P, Dai J, Lu H, Chen C 2022 Opt. Express 30 21822Google Scholar
[20] Gao A, Jiang W, Ma G, Liu Z, Li S, Yan Z, Sun W, Zhang S, Tang W 2022 Curr. Appl. Phys. 33 20Google Scholar
[21] Ma G, Jiang W, Sun W, Yan Z, Sun B, Li S, Zhang M, Wang X, Gao A, Dai J, Liu Z, Li P, Tang W 2021 Phys. Scr. 96 125823Google Scholar
[22] Sun W, Sun B, Li S, Ma G, Gao A, Jiang W, Zhang M, Li P, Liu Z, Tang W 2022 Chin. Phys. B 31 024205Google Scholar
[23] Nakagomi S, Sato T, Takahashi Y, Kokubun Y 2015 Sens. Actuators, A 232 208Google Scholar
[24] Weng W Y, Hsueh T J, Chang S J, Huang G J, Hsueh H T 2011 IEEE Sensors J. 11 1491Google Scholar
[25] 王兰喜, 陈学康, 王瑞, 曹生珠 2009 真空与低温 15 5Google Scholar
Wang L X, Chen X K, Wang D, Cao S Z 2009 Vac. Cryogenics 15 5Google Scholar
[26] Razeghi M, Rogalski A 1996 J. Appl. Phys. 79 7433Google Scholar
[27] Tung R T 2014 Appl. Phys. Rev. 1 011304Google Scholar
[28] Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z, Tang W 2020 J. Phys. D: Appl. Phys. 53 085105Google Scholar
[29] Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar
[30] Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071Google Scholar
[31] Xu X, Chen J, Cai S, Long Z, Zhang Y, Su L, He S, Tang C, Liu P, Peng H, Fang X 2018 Adv. Mater. 30 1803165Google Scholar
[32] Garrido J A, Monroy E, Izpura I, Muñoz E 1998 Semicond. Sci. Technol. 13 563Google Scholar
[33] Grabowski S P, Schneider M, Nienhaus H, Mönch W, Dimitrov R, Ambacher O, Stutzmann M 2001 Appl. Phys. Lett. 78 2503Google Scholar
[34] Ma J, Zheng M, Chen C, Zhu Z, Zheng X, Chen Z, Guo Y, Liu C, Yan Y, Fang G 2018 Adv. Funct. Mater. 28 1804128Google Scholar
计量
- 文章访问数: 4539
- PDF下载量: 90
- 被引次数: 0