搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔GaN/CuZnS异质结窄带近紫外光电探测器

郭越 孙一鸣 宋伟东

引用本文:
Citation:

多孔GaN/CuZnS异质结窄带近紫外光电探测器

郭越, 孙一鸣, 宋伟东

Narrowband near-ultraviolet photodetector fabricated from CuZnS/porous GaN heterojunction

Guo Yue, Sun Yiming, Song Weidong
PDF
导出引用
  • 窄带光电探测系统在荧光检测、人工视觉等领域具有广泛应用。为了实现对特殊波段的窄带光谱探测,传统上需要将宽带探测器和光学滤波片集成。但是,随着检测技术的发展,人们对探测系统的功耗、尺寸、成本等方面也提出了更高要求,结构复杂、成本高的传统窄带光电探测器应用受到限制。于是,本文展示了一种基于多孔GaN/CuZnS异质结的无滤波、窄带近紫外光电探测器。通过光电化学刻蚀和水浴生长方法,分别制备了具有低缺陷密度的多孔GaN薄膜和高空穴电导率的CuZnS薄膜,并构建了多孔GaN/CuZnS异质结近紫外光电探测器。得益于GaN的多孔结构和CuZnS的光学滤波作用,器件在-2 V偏压、370 nm紫外光照下,光暗电流比超过四个数量级;更重要的是,器件具有超窄带近紫外光响应(半峰宽<8 nm,峰值为370 nm)。此外,该探测器的峰值响应度、外量子效率和比探测率分别达到了0.41 A/W、138.6%和9.8×1012 Jones。这些优异的器件性能显示了基于多孔GaN/CuZnS异质结的近紫外探测器在窄光谱紫外检测领域具有广阔的应用前景。
    Narrowband photodetection systems are widely used in fluorescence detection, artificial vision and other fields. In order to realize the narrow spectral detection of special band, it is traditionally necessary to integrate broadband detectors and optical filters. However, with the development of detection technology, higher requirements have also been placed on the power consumption, size, and cost of the detection system, and the application of traditional narrowband photodetectors with complex structures and high costs is limited. Thus, a filterless, narrow-band near-ultraviolet photodetector based on a porous GaN/CuZnS heterojunction is demonstrated. The porous GaN thin films with low defect density and CuZnS thin films with high hole conductivity were fabricated by photoelectrochemical etching and water bath growth methods, respectively, and the porous GaN/CuZnS heterojunction near-ultraviolet photodetectors were thus fabricated. Benefiting from the porous structure of GaN and the optical filtering effect of CuZnS, the photo-dark current ratio of the device exceeds four orders of magnitudes under -2 V bias and 370 nm light illumination; more importantly, the device has an ultra-narrowband near-ultraviolet photoresponse with a FWHM of <8 nm (peak at 370 nm). In addition, the peak responsivity, external quantum efficiency and specific detectivity reaches at 0.41 A/W, 138.6% and 9.8×1012 Jones, respectively. These excellent device performances show that the near-ultraviolet photodetectors based on porous GaN/CuZnS heterojunctions have broad application prospects in the field of narrow-spectrum ultraviolet photodetection.
  • [1]

    Wang T, Liang H, Han Z, Sui Y, Mei Z 2021Adv. Mater. Technol. 6 2000945

    [2]

    Wang S, Wu C, Wu F, Zhang F, Liu A, Zhao N, Guo D 2021Sens. Actuators, A 330 112870

    [3]

    Qiu M, Sun P, Liu Y, Huang Q, Zhao C, Li Z, Mai W 2018Adv. Mater. Technol. 3 1700288

    [4]

    Kim M, Seo J-H, Singisetti U, Ma Z 2017J. Mater. Chem. C 5 8338

    [5]

    Li L, Liu Z, Wang L, zhang B, Liu Y, Ao J-P 2018Mater. Sci. Semicond. Process. 76 61

    [6]

    Zhou H, Gui P, Yu Q, Mei J, Wang H, Fang G 2015J. Mater. Chem. C 3 990

    [7]

    Song W, Chen J, Li Z, Fang X 2021Adv. Mater. 33 2101059

    [8]

    Wang Y, Wu C, Guo D, Li P, Wang S, Liu A, Li C, Wu F, Tang W 2020Adv. Electron. Mater. 2 2032

    [9]

    Zhu H, Shan C X, Yao B, Li B H, Zhang J Y, Zhao D X, Shen D Z, Fan X W 2008J. Phys. Chem. C 112 20546

    [10]

    Ni P N, Shan C X, Wang S P, Liu X Y, Shen D Z 2013J. Mater. Chem. C 14445

    [11]

    Gui P, Li J, Zheng X, Wang H, Yao F, Hu X, Liu Y, Fang G 2020J. Mater. Chem. C 8 6804

    [12]

    Qin Y, Li L, Zhao X, Tompa G S, Dong H, Jian G, He Q, Tan P, Hou X, Zhang Z, Yu S, Sun H, Xu G, Miao X, Xue K, Long S, Liu M 2020ACS Photonics 7 812

    [13]

    Sarkar K, Kumar P 2021Appl. Surf. Sci. 566 150695

    [14]

    Yang C, Xi X, Yu Z, Cao H, Li J, Lin S, Ma Z, Zhao L 2018ACS Appl. Mater. Interfaces 10 5492

    [15]

    Calahorra Y, Spiridon B, Wineman A, Busolo T, Griffin P, Szewczyk P K, Zhu T, Jing Q, Oliver R, Kar-Narayan S 2020Appl. Mater. Today 21 100858

    [16]

    Xiao Y, Liu L, Ma Z H, Meng B, Qin S J, Pan G B 2019Nanomaterials 91198

    [17]

    Yu R, Wang G, Shao Y, Wu Y, Wang S, Lian G, Zhang B, Hu H, Liu L, Zhang L, Hao X 2019J. Mater. Chem. C 714116

    [18]

    Li J, Xi X, Lin S, Ma Z, Li X, Zhao L 2020ACS Appl. Mater. Interfaces 12 11965

    [19]

    Li J, Xi X, Li X, Lin S, Ma Z, Xiu H, Zhao L 2022Adv. Opt. Mater. 8 1902162

    [20]

    Li Q, Liu G, Yu J, Wang G, Wang S, Cheng T, Chen C, Liu L, Yang J, Xu X, Zhang L 2022J. Mater. Chem. C 10 8321

    [21]

    Huang Z, Liu J, Zhang T, Jin Y, Wang J, Fan S, Li Q 2021ACS Appl. Mater. Interfaces 13 22796

    [22]

    Hu J, Yang S, Zhang Z, Li H, Perumal Veeramalai C, Sulaman M, Saleem M I, Tang Y, Jiang Y, Tang L, Zou B 2021J. Mater. Sci. Technol. 68 216

    [23]

    Rajamani S, Arora K, Konakov A, Belov A, Korolev D, Nikolskaya A, Mikhaylov A, Surodin S, Kryukov R, Nikolitchev D, Sushkov A, Pavlov D, Tetelbaum D, Kumar M, Kumar M 2018Nanotechnology 29 305603

    [24]

    Lan Z, Lau Y S, Wang Y, Xiao Z, Ding L, Luo D, Zhu F 2020Adv. Opt. Mater. 8 2001388

    [25]

    Qin Z, Song D, Xu Z, Qiao B, Huang D, Zhao S 2020Org. Electron. 76 105417

    [26]

    Wang J, Xiao S, Qian W, Zhang K, Yu J, Xu X, Wang G, Zheng S, Yang S 2021Adv. Mater. 33 2005557

    [27]

    Li J, Yang C, Liu L, Cao H, Lin S, Xi X, Li X, Ma Z, Wang K, Patanè A, Zhao L 2020Adv. Opt. Mater. 8 1901276

    [28]

    Guo Y, Song W, Liu Q, Sun Y, Chen Z, He X, Zeng Q, Luo X, Zhang R, Li S 2022J. Mater. Chem. C 10 5116

    [29]

    Wang X, Pan Y, Xu Y, Zhao J, Li Y, Li Q, Chen J, Zhao Z, Zhang X, Elemike E E, Onwudiwe D C, Bae B S, Lei W 2022Adv. Electron. Mater. 8 2200178

    [30]

    Guo H, Jiang L, Huang K, Wang R, Liu S, Li Z, Rong X, Dong G 2021Org. Electron. 92 106122

    [31]

    Zhang Y, Song W 2021J. Mater. Chem. C 9 4799

    [32]

    Zhang Y, Xu X, Fang X 2019InfoMat 1 542

    [33]

    Davis E A, Mott N F 1970Philos. Mag. 22 0903

    [34]

    Zheng Y, Li Y, Tang X, Wang W, Li G 2020Adv. Opt. Mater. 8 2000197

    [35]

    Shen L, Zhang Y, Bai Y, Zheng X, Wang Q, Huang J 2016Nanoscale 8 12990

    [36]

    Yadav A, Agrawal J, Singh V 2021IEEE Photonics Technol. Lett. 33 1065

    [37]

    Zheng L, Hu K, Teng F, Fang X 2017Small 13 1602448

    [38]

    Song W, Wang X, Xia C, Wang R, Zhao L, Guo D, Chen H, Xiao J, Su S, Li S 2017Nano Energy 33 272

    [39]

    Xu X, Chen J, Cai S, Long Z, Zhang Y, Su L, He S, Tang C, Liu P, Peng H, Fang X 2018Adv. Mater. 30 1803165

    [40]

    Wang L, Jie J, Shao Z, Zhang Q, Zhang X, Wang Y, Sun Z, Lee S-T 2015Adv. Funct. Mater. 25 2910

    [41]

    Li L, Deng Y, Bao C, Fang Y, Wei H, Tang S, Zhang F, Huang J 2017Adv. Opt. Mater. 5 1700672

    [42]

    Wang W, Zhang F, Du M, Li L, Zhang M, Wang K, Wang Y, Hu B, Fang Y, Huang J 2017Nano Lett. 17 1995

    [43]

    Shen L, Fang Y, Wei H, Yuan Y, Huang J 2016Adv. Mater. 28 2043

    [44]

    Li W, Li D, Dong G, Duan L, Sun J, Zhang D, Wang L 2016Laser Photonics Rev. 10 473

    [45]

    Zhang Y, Xu J, Shi S, Gao Y, Wang C, Zhang X, Yin S, Li L 2016ACS Appl. Mater. Interfaces 8 22647

    [46]

    Wang H, Chen H, Li L, Wang Y, Su L, Bian W, Li B, Fang X 2019J Phys Chem Lett 10 6850

    [47]

    Hu L, Yan J, Liao M, Xiang H, Gong X, Zhang L, Fang X 2012Adv. Mater. 24 2305

  • [1] 何鑫, 李鑫焱, 李景辉, 张振华. Fe原子吸附的锑烯/WS2异质结的磁电子性质及调控效应. 物理学报, doi: 10.7498/aps.71.20220949
    [2] 丁俊, 文黎巍, 李瑞雪, 张英. 铁电极化翻转对硅烯异质结中电子性质的调控. 物理学报, doi: 10.7498/aps.71.20220815
    [3] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选. 物理学报, doi: 10.7498/aps.70.20210956
    [4] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器. 物理学报, doi: 10.7498/aps.70.20201325
    [5] 姚文乾, 孙健哲, 陈建毅, 郭云龙, 武斌, 刘云圻. 二维平面和范德瓦耳斯异质结的可控制备与光电应用. 物理学报, doi: 10.7498/aps.70.20201419
    [6] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, doi: 10.7498/aps.69.20201235
    [7] 左依凡, 李培丽, 栾开智, 王磊. 基于自准直效应的光子晶体异质结偏振分束器. 物理学报, doi: 10.7498/aps.67.20171815
    [8] 温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣. 异质结碳纳米管的热整流效率. 物理学报, doi: 10.7498/aps.64.216501
    [9] 裴佳楠, 蒋大勇, 田春光, 郭泽萱, 刘如胜, 孙龙, 秦杰明, 侯建华, 赵建勋, 梁庆成, 高尚. 包埋Pt纳米粒子对金属-半导体-金属结构ZnO紫外光电探测器性能的影响. 物理学报, doi: 10.7498/aps.64.067802
    [10] 段宝兴, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析. 物理学报, doi: 10.7498/aps.63.057302
    [11] 丁文革, 桑云刚, 于威, 杨彦斌, 滕晓云, 傅广生. 富硅氮化硅/c-Si异质结中的电流输运机理研究. 物理学报, doi: 10.7498/aps.61.247304
    [12] 吴利华, 章晓中, 于奕, 万蔡华, 谭新玉. a-C: Fe/AlOx/Si基异质结的光伏效应. 物理学报, doi: 10.7498/aps.60.037807
    [13] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池. 物理学报, doi: 10.7498/aps.59.1248
    [14] 伍楷舜, 龙兴腾, 董建文, 陈弟虎, 汪河洲. 光子晶体异质结的位相和应用. 物理学报, doi: 10.7498/aps.57.6381
    [15] 张伟英, 邬小鹏, 孙利杰, 林碧霞, 傅竹西. ZnO/Si异质结的光电转换特性研究. 物理学报, doi: 10.7498/aps.57.4471
    [16] 孙 晖, 张琦锋, 吴锦雷. 基于氧化锌纳米线的紫外发光二极管. 物理学报, doi: 10.7498/aps.56.3479
    [17] 关春颖, 苑立波. 六角蜂窝结构光子晶体异质结带隙特性研究. 物理学报, doi: 10.7498/aps.55.1244
    [18] 刘江涛, 周云松, 王福合, 顾本源. 不同晶格光子晶体异质结的界面传导模. 物理学报, doi: 10.7498/aps.53.1845
    [19] 刘 红, 陈将伟. 纳米碳管异质结的结构及其电学性质. 物理学报, doi: 10.7498/aps.52.664
    [20] 李国辉, 周世平, 徐得名. GaAs/AlGaAs异质结动力学行为研究. 物理学报, doi: 10.7498/aps.50.1567
计量
  • 文章访问数:  213
  • PDF下载量:  23
  • 被引次数: 0
出版历程

多孔GaN/CuZnS异质结窄带近紫外光电探测器

  • 1. 五邑大学应用物理与材料学院, 广东 江门 529000;
  • 2. 华南师范大学半导体科学与技术学院, 广东 广州 510631

摘要: 窄带光电探测系统在荧光检测、人工视觉等领域具有广泛应用。为了实现对特殊波段的窄带光谱探测,传统上需要将宽带探测器和光学滤波片集成。但是,随着检测技术的发展,人们对探测系统的功耗、尺寸、成本等方面也提出了更高要求,结构复杂、成本高的传统窄带光电探测器应用受到限制。于是,本文展示了一种基于多孔GaN/CuZnS异质结的无滤波、窄带近紫外光电探测器。通过光电化学刻蚀和水浴生长方法,分别制备了具有低缺陷密度的多孔GaN薄膜和高空穴电导率的CuZnS薄膜,并构建了多孔GaN/CuZnS异质结近紫外光电探测器。得益于GaN的多孔结构和CuZnS的光学滤波作用,器件在-2 V偏压、370 nm紫外光照下,光暗电流比超过四个数量级;更重要的是,器件具有超窄带近紫外光响应(半峰宽<8 nm,峰值为370 nm)。此外,该探测器的峰值响应度、外量子效率和比探测率分别达到了0.41 A/W、138.6%和9.8×1012 Jones。这些优异的器件性能显示了基于多孔GaN/CuZnS异质结的近紫外探测器在窄光谱紫外检测领域具有广阔的应用前景。

English Abstract

目录

    /

    返回文章
    返回