搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti掺杂Nd2Fe14B/α-Fe纳米双相复合永磁体晶化动力学

邓晨华 于忠海 王宇涛 孔森 周超 杨森

引用本文:
Citation:

Ti掺杂Nd2Fe14B/α-Fe纳米双相复合永磁体晶化动力学

邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森

Crystallization kinetics of Ti-doped Nd2Fe14B/α-Fe nanocomposite permanent magnets

Deng Chen-Hua, Yu Zhong-Hai, Wang Yu-Tao, Kong Sen, Zhou Chao, Yang Sen
PDF
HTML
导出引用
  • 纳米双相复合稀土永磁材料, 利用硬磁相高磁晶各向异性和软磁相高饱和磁化强度的优点, 通过铁磁交换耦合作用获得优异的磁性能. 但是如何解决软硬磁双相纳米微结构不匹配的问题, 控制软硬磁相同时达到理想的纳米尺度复合是关键. 本文研究了掺杂合金元素Ti对熔体快淬法制备的Nd2Fe14B/α-Fe快淬薄带晶化过程的影响. 结果表明, 掺杂合金元素Ti能影响Nd2Fe14B/α-Fe交换耦合磁体整个晶化动力学过程, 使α-Fe相的晶化激活能升高, 抑制其从非晶相中析出. 同时, 降低1∶7亚稳相的晶化激活能, 起到稳定亚稳相的作用. 而且随着晶化温度的进一步提高, α-Fe和Nd2Fe14B两相由1∶7亚稳相分解产生, 从而有效避免了α-Fe相的优先析出. 显微组织观察表明, 掺杂Ti的样品晶粒细小、分布均匀, 平均晶粒尺寸在20 nm左右, 没有特别大的α-Fe粒子出现. 当Ti的掺杂量原子百分数为1.0%时, 获得了最佳磁性能(BH)max = 12 MG·Oe (1 G = 10–4 T, 1 Oe = 79.57795 A/m).
    Nanocomposite magnet consisting of a fine mixture of magnetically hard and soft phase has received much attention for potential permanent magnet development. One of the important requirements for alloys to exhibit excellent magnetic properties is a nanocrystalline grain size. The soft and hard magnetic phases can simultaneously achieve ideal nanoscale composites. The effect of Ti additions in the amorphous crystallization process of the exchange-coupled nanocomposite Nd2Fe14B/α-Fe magnet prepared by melt spinning is investigated. The results show that Ti can change the crystallization kinetics of the NdFeB melt-spun ribbons. The Ti can increase the activation energy of α-Fe and contrarily reduce the activation energy of a metastable 1∶7 phase, so the growth speed of α-Fe decreases and the metastable 1∶7 phase can stably precipitate from the amorphous phase. When the annealing temperature increases, a metastable 1∶7 phase is decomposed into the α-Fe phase and the Nd2Fe14B phase. The microstructure observation shows that the grains of the alloys doped with Ti are fine and uniform, with an average grain size of about 20 nm, and no particularly large α-Fe particles appear. The optimal magnetic property is (BH)max = 12 MG·Oe (1 G = 10–4 T, 1 Oe = 79.57795 A/m) when Ti addition is 1.0%.
      通信作者: 杨森, yangsen@mail.xjtu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFB3803003)、国家自然科学基金(批准号: 52002266, 91963111)和中国博士后科学基金(批准号: 2020M673384)资助的课题.
      Corresponding author: Yang Sen, yangsen@mail.xjtu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFB3803003), the National Natural Science Foundation of China (Grant Nos. 52002266, 91963111), and the China Postdoctoral Science Foundation (Grant No. 2020M673384).
    [1]

    Zeng H, Li J, Liu J P, Wang Z L, Sun S 2002 Nature 420 395Google Scholar

    [2]

    Liu Z, He J, Ramanujan R V 2021 Mater. Des. 209 110004Google Scholar

    [3]

    Quesada A, Granados-Miralles C, López-Ortega A, Erokhin S, Lottini E, Pedrosa J, Bollero A, Aragón A M, Rubio-Marcos F, Stingaciu M, Bertoni G, Fernández C de J, Sangregorio C, Fernández J F, Berkov D, Christensen M 2016 Adv. Electron. Mater. 2 1500365Google Scholar

    [4]

    庞利佳, 孙光飞, 陈菊芳, 强文江, 张锦标, 黎文安 2006 物理学报 55 3049Google Scholar

    Pang L J, Sun G F, Chen J F, Qiang W J, Zhang J B, Li W A 2006 Acta Phys. Sin. 55 3049Google Scholar

    [5]

    Hernando A, Gonzalez J M 2000 Hyperfine Interact. 130 221Google Scholar

    [6]

    夏静, 张溪超, 赵国平 2013 物理学报 62 227502Google Scholar

    Xia J, Zhang X C, Zhao G P 2013 Acta Phys. Sin. 62 227502Google Scholar

    [7]

    Yang C J, Park E B 1997 J. Magn. Magn. Mater. 168 278Google Scholar

    [8]

    Mohseni F, Pullar R C, Vieira J M, Amaral J S 2020 J. Phys. D:Appl. Phys. 53 494003Google Scholar

    [9]

    Kuma J, Kitajima N, Kanai Y, Fukunaga H 1998 J. Appl. Phys. 83 6623

    [10]

    Attyabi S N, Radmanesh S M A, Seyyed Ebrahimi S A, Dehghan H 2022 J. Supercond. Novel Magn. 35 1229Google Scholar

    [11]

    Skomski R, Coey J M D 1993 Phys. Rev. B 48 15812Google Scholar

    [12]

    Bauer J, Seager M, Zerm A, Kronmüller H 1996 J. Appl. Phys. 80 1667Google Scholar

    [13]

    Deng W K, Wei B N, Shan W K, Hua Y X, Li X, Guo D F 2021 Physica B 620 413263Google Scholar

    [14]

    Ma Y, Yin X, Shao B, Yang Q, Shen Q, Zhou X, Sun J, Guo D, Li K 2019 J. Mater. Sci. 54 2658Google Scholar

    [15]

    Yang S, Song X P, Li S, Liu X, Tian Z, Gu B, Du Y 2003 J. Magn. Magn. Mater. 263 134

    [16]

    Ngo H M, Lee G, Haider S K, Pal U, Hawari T, Kim K M, Kim J, Kwon H, Kang Y S 2021 RSC Adv. 11 32376Google Scholar

    [17]

    Kim C, Ding S L, O Y J, Zha L, Yun C, Yang W Y, Han J Z, Liu S Q, Du H L, Wang C S, Yang J B 2021 J. Phys. D:Appl. Phys. 54 245003Google Scholar

    [18]

    何学敏, 钟伟, 都有为 2018 物理学报 67 227501Google Scholar

    He X M, Zhong W, Du Y W 2018 Acta Phys. Sin. 67 227501Google Scholar

    [19]

    Semaida A M, Bordyuzhin I G, El-Dek S I, Kutzhanov M K, Menushenkov V P, Savchenko A G 2021 Mater. Res. Express 8 076101Google Scholar

    [20]

    Wang Y, Song W, Huang G 2022 J. Supercond. Novel Magn. 35 1261Google Scholar

    [21]

    Pan M, Li Z, Wu Q, Ge H, Xu H 2019 J. Magn. Magn. Mater. 471 457Google Scholar

    [22]

    Zhang S Y, Xu H, Ni J S, Wang H L, Hou X L, Dong Y D 2007 Physica B 393 153Google Scholar

    [23]

    Zhang W, Zhang S, Yan A, Zhang H, Shen B 2001 J. Magn. Magn. Mater. 225 389Google Scholar

    [24]

    Yang S, Song X, Gu B, Du Y 2005 J. Alloys Compd. 394 1Google Scholar

    [25]

    Hono K, Ping D H, Ohnuma M, Onodera H 1999 Acta Mater. 47 997Google Scholar

    [26]

    Ping D H, Hono K, Kanekiyo H, Hirosawa S 1999 Acta Mater. 47 4641Google Scholar

    [27]

    Yang S, Song X, Du Y 2003 Microelectron. Eng. 66 121Google Scholar

    [28]

    Kelly P E, O’Grady K, Chantrell R W 1989 IEEE Trans. Magn. 25 3881Google Scholar

    [29]

    Wohlfarth E P 1958 J. Appl. Phys. 29 595

  • 图 1  Nd8Fe86B6 (a), (b) 和 Nd8Fe85Ti1B6 (c), (d)合金快淬带的DSC分析曲线以及结晶过程中–ln(R/T 2)与1/T的关系曲线

    Fig. 1.  The DSC results and –ln(R/T 2) as a function of 1/T in the crystallization of Nd8Fe86B6 (a), (b) and Nd8Fe85Ti1B6 (c), (d) ribbons at different heating rates.

    图 2  (a) Nd8Fe86B6和(b) Nd8Fe85Ti1B6快淬合金带的TMA曲线; (c) Nd8Fe86B6和(d) Nd8Fe85Ti1B6快淬合金带在不同温度3 min晶化处理后的XRD曲线

    Fig. 2.  TMA results of the ribbons of (a) Nd8Fe86B6, (b) Nd8Fe85Ti1B6; XRD patterns of (c) Nd8Fe86B6 (d) Nd8Fe85Ti1B6 ribbons annealed at different temperature for 3 min.

    图 3  (a) Nd8Fe86B6合金快淬带650 ℃晶化10 min后局部TEM图谱; Nd8Fe85Ti1B6合金快淬带在不同温度下晶化3 min后的TEM图谱 (b) 快淬; (c) 600 ℃; (d) 650 ℃; (e) 700 ℃. 插图为对应的高分辨电子衍射谱

    Fig. 3.  TEM micrographs of (a) Nd8Fe86B6 ribbons annealed at 650 ℃ for 10 min, and Nd8Fe85Ti1B6 ribbons annealed at different temperature for 3 min: (b) as-spun; (c) 600 ℃; (d) 650 ℃; (e) 700 ℃. The insets are the corresponding electron diffraction patterns.

    图 4  Nd8Fe85Ti1B6快淬合金带650 ℃晶化60 min后的形貌像(a)和晶格像(b)

    Fig. 4.  TEM micrographs (a) and electron diffraction patterns (b) of Nd8Fe85Ti1B6 ribbons annealed at 650 ℃ for 60 min.

    图 5  650 ℃下退火10 min的Nd8Fe86B6和Nd8Fe85Ti1B6快淬合金带的磁滞回线 (a)和 ΔM曲线 (b)

    Fig. 5.  Hysteresis loops (a) and ΔM (b) as a function of applied field of Nd8Fe86B6 and Nd8Fe85Ti1B6 ribbons annealed at 650 ℃ for 10 min.

  • [1]

    Zeng H, Li J, Liu J P, Wang Z L, Sun S 2002 Nature 420 395Google Scholar

    [2]

    Liu Z, He J, Ramanujan R V 2021 Mater. Des. 209 110004Google Scholar

    [3]

    Quesada A, Granados-Miralles C, López-Ortega A, Erokhin S, Lottini E, Pedrosa J, Bollero A, Aragón A M, Rubio-Marcos F, Stingaciu M, Bertoni G, Fernández C de J, Sangregorio C, Fernández J F, Berkov D, Christensen M 2016 Adv. Electron. Mater. 2 1500365Google Scholar

    [4]

    庞利佳, 孙光飞, 陈菊芳, 强文江, 张锦标, 黎文安 2006 物理学报 55 3049Google Scholar

    Pang L J, Sun G F, Chen J F, Qiang W J, Zhang J B, Li W A 2006 Acta Phys. Sin. 55 3049Google Scholar

    [5]

    Hernando A, Gonzalez J M 2000 Hyperfine Interact. 130 221Google Scholar

    [6]

    夏静, 张溪超, 赵国平 2013 物理学报 62 227502Google Scholar

    Xia J, Zhang X C, Zhao G P 2013 Acta Phys. Sin. 62 227502Google Scholar

    [7]

    Yang C J, Park E B 1997 J. Magn. Magn. Mater. 168 278Google Scholar

    [8]

    Mohseni F, Pullar R C, Vieira J M, Amaral J S 2020 J. Phys. D:Appl. Phys. 53 494003Google Scholar

    [9]

    Kuma J, Kitajima N, Kanai Y, Fukunaga H 1998 J. Appl. Phys. 83 6623

    [10]

    Attyabi S N, Radmanesh S M A, Seyyed Ebrahimi S A, Dehghan H 2022 J. Supercond. Novel Magn. 35 1229Google Scholar

    [11]

    Skomski R, Coey J M D 1993 Phys. Rev. B 48 15812Google Scholar

    [12]

    Bauer J, Seager M, Zerm A, Kronmüller H 1996 J. Appl. Phys. 80 1667Google Scholar

    [13]

    Deng W K, Wei B N, Shan W K, Hua Y X, Li X, Guo D F 2021 Physica B 620 413263Google Scholar

    [14]

    Ma Y, Yin X, Shao B, Yang Q, Shen Q, Zhou X, Sun J, Guo D, Li K 2019 J. Mater. Sci. 54 2658Google Scholar

    [15]

    Yang S, Song X P, Li S, Liu X, Tian Z, Gu B, Du Y 2003 J. Magn. Magn. Mater. 263 134

    [16]

    Ngo H M, Lee G, Haider S K, Pal U, Hawari T, Kim K M, Kim J, Kwon H, Kang Y S 2021 RSC Adv. 11 32376Google Scholar

    [17]

    Kim C, Ding S L, O Y J, Zha L, Yun C, Yang W Y, Han J Z, Liu S Q, Du H L, Wang C S, Yang J B 2021 J. Phys. D:Appl. Phys. 54 245003Google Scholar

    [18]

    何学敏, 钟伟, 都有为 2018 物理学报 67 227501Google Scholar

    He X M, Zhong W, Du Y W 2018 Acta Phys. Sin. 67 227501Google Scholar

    [19]

    Semaida A M, Bordyuzhin I G, El-Dek S I, Kutzhanov M K, Menushenkov V P, Savchenko A G 2021 Mater. Res. Express 8 076101Google Scholar

    [20]

    Wang Y, Song W, Huang G 2022 J. Supercond. Novel Magn. 35 1261Google Scholar

    [21]

    Pan M, Li Z, Wu Q, Ge H, Xu H 2019 J. Magn. Magn. Mater. 471 457Google Scholar

    [22]

    Zhang S Y, Xu H, Ni J S, Wang H L, Hou X L, Dong Y D 2007 Physica B 393 153Google Scholar

    [23]

    Zhang W, Zhang S, Yan A, Zhang H, Shen B 2001 J. Magn. Magn. Mater. 225 389Google Scholar

    [24]

    Yang S, Song X, Gu B, Du Y 2005 J. Alloys Compd. 394 1Google Scholar

    [25]

    Hono K, Ping D H, Ohnuma M, Onodera H 1999 Acta Mater. 47 997Google Scholar

    [26]

    Ping D H, Hono K, Kanekiyo H, Hirosawa S 1999 Acta Mater. 47 4641Google Scholar

    [27]

    Yang S, Song X, Du Y 2003 Microelectron. Eng. 66 121Google Scholar

    [28]

    Kelly P E, O’Grady K, Chantrell R W 1989 IEEE Trans. Magn. 25 3881Google Scholar

    [29]

    Wohlfarth E P 1958 J. Appl. Phys. 29 595

  • [1] 卢一林, 董盛杰, 崔方超, 张开成, 刘春梅, 李杰森, 毛卓. 碳和氧掺杂紫磷烯作为双极磁性半导体材料的理论预测. 物理学报, 2024, 73(1): 016301. doi: 10.7498/aps.73.20231279
    [2] 黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程. Mn-In-Cu共掺杂优化SnTe基材料的热电性能. 物理学报, 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [3] 沈忠慧, 江彦达, 李宝文, 张鑫. 高储能密度铁电聚合物纳米复合材料研究进展. 物理学报, 2020, 69(21): 217706. doi: 10.7498/aps.69.20201209
    [4] 于鹏, 曹盛, 曾若生, 邹炳锁, 赵家龙. 金属离子掺杂提高全无机钙钛矿纳米晶发光性质的研究进展. 物理学报, 2020, 69(18): 187801. doi: 10.7498/aps.69.20200795
    [5] 施伟, 周强, 刘斌. 基于旋转永磁体的超低频机械天线电磁特性分析. 物理学报, 2019, 68(18): 188401. doi: 10.7498/aps.68.20190339
    [6] 李柱柏, 李赟, 秦渊, 张雪峰, 沈保根. 稀土永磁体及复合磁体反磁化过程和矫顽力. 物理学报, 2019, 68(17): 177501. doi: 10.7498/aps.68.20190364
    [7] 马国亮, 李兴冀, 杨剑群, 刘超铭, 田丰, 侯春风. 电子辐照LDPE/MWCNTs复合材料的熔融与结晶行为. 物理学报, 2016, 65(20): 208101. doi: 10.7498/aps.65.208101
    [8] 李丽丽, Xia Zhen-Hai, 杨延清, 韩明. SiC纳米纤维/C/SiC复合材料拉伸行为的分子动力学研究. 物理学报, 2015, 64(11): 117101. doi: 10.7498/aps.64.117101
    [9] 刘奎立, 周思华, 陈松岭. 金属离子掺杂对CuO基纳米复合材料的交换偏置调控. 物理学报, 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [10] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [11] 马俊, 杨万民, 王妙, 陈森林, 冯忠岭. 辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响. 物理学报, 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [12] 何永周. 永磁体外部磁场的不均匀性研究. 物理学报, 2013, 62(8): 084105. doi: 10.7498/aps.62.084105
    [13] 万步勇, 苑进社, 冯庆, 王奥. K,Na掺杂Cu-S纳米晶的水热合成及对结构、性能的影响. 物理学报, 2013, 62(17): 178102. doi: 10.7498/aps.62.178102
    [14] 马俊, 杨万民, 李佳伟, 王妙, 陈森林. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响. 物理学报, 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [15] 马俊, 杨万民, 李国政, 程晓芳, 郭晓丹. 永磁体辅助下单畴GdBCO超导体和永磁体之间的磁悬浮力研究. 物理学报, 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [16] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究. 物理学报, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [17] 徐新发, 邵晓红. Y掺杂SrTiO3晶体材料的电子结构计算. 物理学报, 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [18] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究. 物理学报, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [19] 徐国成, 潘 玲, 关庆丰, 邹广田. 非晶钛酸铋的晶化过程. 物理学报, 2006, 55(6): 3080-3085. doi: 10.7498/aps.55.3080
    [20] 计齐根, 都有为. 晶粒边界对Nd2Fe14B/α-Fe纳米复合材料性能的影响. 物理学报, 2000, 49(11): 2281-2286. doi: 10.7498/aps.49.2281
计量
  • 文章访问数:  3904
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-24
  • 修回日期:  2022-08-29
  • 上网日期:  2022-10-27
  • 刊出日期:  2023-01-20

/

返回文章
返回