搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC纳米纤维/C/SiC复合材料拉伸行为的分子动力学研究

李丽丽 Xia Zhen-Hai 杨延清 韩明

引用本文:
Citation:

SiC纳米纤维/C/SiC复合材料拉伸行为的分子动力学研究

李丽丽, Xia Zhen-Hai, 杨延清, 韩明

Molecular dynamics study on tensile behavior of SiC nanofiber/C/SiC nanocomposites

Li Li-Li, Xia Zhen-Hai, Yang Yan-Qing, Han Ming
PDF
导出引用
  • 本文采用分子动力学计算方法和Tersoff作用势研究了无定型碳(amorphous carbon, a-C) 涂层厚度对SiC纳米纤维/SiC纳米复合材料断裂方式及力学性能的影响. 分析结果发现, 随着涂层厚度的增加, 纳米纤维的平均应力集中系数下降, 即足够厚度涂层可以同时起到增强和补韧的作用. 当a-C涂层厚度t ≤ 0.3 nm时, 裂纹直接穿透纤维, 纳米复合材料表现出典型的脆性断裂方式; t = 4.0 nm时, 裂纹发生偏转, SiC纳米纤维发生拔出现象, 此时纳米复合材料的拉伸强度约为无涂层纳米复合材料的4倍, 断裂能则提高一个数量级. 计算结果表明, a-C涂层的厚度是SiC纳米纤维/SiC纳米复合材料中产生韧性机理的重要因素, 即传统微米级陶瓷基复合材料的增韧理论在纳米复合材料中仍适用. 研究结果可望为设计同时具有高强度、高韧性的陶瓷基纳米复合材料提供理论基础.
    Fracture behavior and mechanical properties of SiC nanofiber (SiCNF) reinforced SiC nanocomposites as influenced by the thickness of amorphous carbon (a-C) coatings are studied via molecular dynamics simulations using Tersoff potential. To simulate the condition that a matrix crack arrives at the interface between matrix and coating, a pre-setting matrix crack is created. Results show that the tensile stress-strain curve of nanocomposites without and/or with thin a-C coatings (e.g., t≤ 0.3 nm) demonstrates an abrupt drop after achieving a maximum value, while nonlinear tails appear in the curves of nanocomposites with thick a-C coatings (e.g., t >2.0 nm). It is demonstrated that the SiCNF is penetrated by the matrix crack when it is uncoated and/or coated by a thin a-C layer (t ≤ 0.3 nm) and the nanocomposite fails in a typical brittle mode; whereas the crack deflection path changes and the SiCNF is pulled out from the matrix when the a-C coatings are thick enough (e.g., 4 nm), showing a different fracture mode in nanocomposites. Compared to nanocomposites without an a-C coating, the tensile strength of nanocomposites with a-C coating of 4.0 nm thickness is about four times higher, and the fracture energy increases around an order of magnitude. Furthermore, the average stress concentration factor for SiCNF in nanocomposites, defined as the ratio of tensile strength of single SiCNF to the average stress of the nanofiber in the composite when it is broken, is extracted and shows a decreasing trend with increasing coating thickness, indicating that a-C coating can therefore be expected to simultaneously enhance the tensile strength and fracture energy of the SiCNF/SiC nanocomposites. This work sheds light on the toughening mechanism in SiCNF/C/SiC nanocomposites where a-C coating plays a significant role, indicating that the toughening mechanism in conventional ceramic matrix composites on a microscale is still valid on a nanoscale. Simulation results suggest that coating thickness in material design is efficient for engineering SiCNF/SiC nanocomposites with high strength and toughness.
    • 基金项目: 国家自然科学基金(批准号:51071125)和福建省中青年教师教育科研项目(批准号:JA14218)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51071125), and the Education Scientific Research Project for Young Teachers of Fujian, China (Grant No. JA14218).
    [1]

    Karnitz M A, Craig D F, Richlen S L 1991 Am. Ceram. Soc. Bull. 80 430

    [2]

    Donald I W, Mcmillan P W 1976 J. Mater. Sci. 11 949

    [3]

    Marshall D B, Evans A G 1985 J. Am. Ceram. Soc. 68 225

    [4]

    Besmann T M, Stinton D P, Kupp E R, Shanmugham S, Liaw P K 1997 Mater. Res. Soc. Symp. Proc. 458 147

    [5]

    Evans A G 1990 J. Am. Ceram. Soc. 73 187

    [6]

    Curtin W A 1991 J. Am. Ceram. Soc. 74 2837

    [7]

    Xia Z H, Curtin W A 2001 Cer. Eng. Sci. Proc. 22 371

    [8]

    Kerans R J, Parthasarathy T A 1999 Composites:Part A 30 521

    [9]

    Kerans R J 1995 Scripta Metall. et Mater. 32 505

    [10]

    Yang W, Kohyama A, Katoh Y, Araki H, Yu J, Noda T 2003 J. Am. Ceram. Soc. 86 851

    [11]

    Yang W, Noda T, Araki H, Yu J, Kohyama A 2003 Mater. Sci. Eng. A 345 28

    [12]

    Wong E W, Sheehan P E, Liebert C M 1997 Science 277 1971

    [13]

    Yang W, Araki H, Tang C, Thaveethavorn S, Kohyama A, Suzuki H, Noda T 2005 Adv. Mater. 17 1519

    [14]

    Xia Z H, Riester L, Curtin W A, Li H, Sheldon B W, Liang J, Chang B, Xu J M 2004 Acta Mater. 52 931

    [15]

    Xia Z H, Curtin W A, Sheldon B W 2004 J. Eng. Mater. Technol. 126 238

    [16]

    Fan J P, Zhuang D M, Zhao D Q, Zhang G, Wu M S, Wei F, Fan Z J 2006 Appl. Phys. Lett. 89 121910

    [17]

    Fan B B, Guo H H, Li W, Jia Y, Zhang R 2013 Acta Phys. Sin. 62 148101 (in Chinese) [范冰冰, 郭焕焕, 李稳, 贾瑜, 张锐 2013 物理学报 62 148101]

    [18]

    Li L, Niu J B, Xia Z H, Yang Y Q, Liang J Y 2011 Scripta Mater. 65 1014

    [19]

    Li L, Solá F, Xia Z H, Yang Y Q 2012 J. Appl. Phys. 111 094306

    [20]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [21]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condensed Matter. 14 783

    [22]

    Pastewka L, Pou P, Pérez R, Gumbsch P, Moseler M 2008 Phys. Rev. B 78 161402

    [23]

    Pastewka L, Moser S, Gumbsch P, Moseler M 2011 Nature Mater. 10 34

  • [1]

    Karnitz M A, Craig D F, Richlen S L 1991 Am. Ceram. Soc. Bull. 80 430

    [2]

    Donald I W, Mcmillan P W 1976 J. Mater. Sci. 11 949

    [3]

    Marshall D B, Evans A G 1985 J. Am. Ceram. Soc. 68 225

    [4]

    Besmann T M, Stinton D P, Kupp E R, Shanmugham S, Liaw P K 1997 Mater. Res. Soc. Symp. Proc. 458 147

    [5]

    Evans A G 1990 J. Am. Ceram. Soc. 73 187

    [6]

    Curtin W A 1991 J. Am. Ceram. Soc. 74 2837

    [7]

    Xia Z H, Curtin W A 2001 Cer. Eng. Sci. Proc. 22 371

    [8]

    Kerans R J, Parthasarathy T A 1999 Composites:Part A 30 521

    [9]

    Kerans R J 1995 Scripta Metall. et Mater. 32 505

    [10]

    Yang W, Kohyama A, Katoh Y, Araki H, Yu J, Noda T 2003 J. Am. Ceram. Soc. 86 851

    [11]

    Yang W, Noda T, Araki H, Yu J, Kohyama A 2003 Mater. Sci. Eng. A 345 28

    [12]

    Wong E W, Sheehan P E, Liebert C M 1997 Science 277 1971

    [13]

    Yang W, Araki H, Tang C, Thaveethavorn S, Kohyama A, Suzuki H, Noda T 2005 Adv. Mater. 17 1519

    [14]

    Xia Z H, Riester L, Curtin W A, Li H, Sheldon B W, Liang J, Chang B, Xu J M 2004 Acta Mater. 52 931

    [15]

    Xia Z H, Curtin W A, Sheldon B W 2004 J. Eng. Mater. Technol. 126 238

    [16]

    Fan J P, Zhuang D M, Zhao D Q, Zhang G, Wu M S, Wei F, Fan Z J 2006 Appl. Phys. Lett. 89 121910

    [17]

    Fan B B, Guo H H, Li W, Jia Y, Zhang R 2013 Acta Phys. Sin. 62 148101 (in Chinese) [范冰冰, 郭焕焕, 李稳, 贾瑜, 张锐 2013 物理学报 62 148101]

    [18]

    Li L, Niu J B, Xia Z H, Yang Y Q, Liang J Y 2011 Scripta Mater. 65 1014

    [19]

    Li L, Solá F, Xia Z H, Yang Y Q 2012 J. Appl. Phys. 111 094306

    [20]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [21]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condensed Matter. 14 783

    [22]

    Pastewka L, Pou P, Pérez R, Gumbsch P, Moseler M 2008 Phys. Rev. B 78 161402

    [23]

    Pastewka L, Moser S, Gumbsch P, Moseler M 2011 Nature Mater. 10 34

  • [1] 邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森. Ti掺杂Nd2Fe14B/α-Fe纳米双相复合永磁体晶化动力学. 物理学报, 2023, 72(2): 027501. doi: 10.7498/aps.72.20221479
    [2] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟. 物理学报, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [3] 沈忠慧, 江彦达, 李宝文, 张鑫. 高储能密度铁电聚合物纳米复合材料研究进展. 物理学报, 2020, 69(21): 217706. doi: 10.7498/aps.69.20201209
    [4] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [5] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [6] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [7] 马国亮, 李兴冀, 杨剑群, 刘超铭, 田丰, 侯春风. 电子辐照LDPE/MWCNTs复合材料的熔融与结晶行为. 物理学报, 2016, 65(20): 208101. doi: 10.7498/aps.65.208101
    [8] 马国亮, 杨剑群, 李兴冀, 刘超铭, 侯春风. 电子辐照聚乙烯/碳纳米管拉伸变形机理. 物理学报, 2016, 65(17): 178104. doi: 10.7498/aps.65.178104
    [9] 林长鹏, 刘新健, 饶中浩. 铝纳米颗粒的热物性及相变行为的分子动力学模拟. 物理学报, 2015, 64(8): 083601. doi: 10.7498/aps.64.083601
    [10] 袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌. 多晶银纳米线拉伸变形的分子动力学模拟研究. 物理学报, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [11] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [12] 马彬, 饶秋华, 贺跃辉, 王世良. 单晶钨纳米线拉伸变形机理的分子动力学研究. 物理学报, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [13] 汪志刚, 黄娆, 文玉华. Au-Pd共晶纳米粒子熔化行为的分子动力学研究. 物理学报, 2012, 61(16): 166102. doi: 10.7498/aps.61.166102
    [14] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [15] 刘 浩, 柯孚久, 潘 晖, 周 敏. 铜-铝扩散焊及拉伸的分子动力学模拟. 物理学报, 2007, 56(1): 407-412. doi: 10.7498/aps.56.407
    [16] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟. 物理学报, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [17] 邓小良, 祝文军, 贺红亮, 伍登学, 经福谦. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为. 物理学报, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [18] 徐 洲, 王秀喜, 梁海弋, 吴恒安. 纳米单晶与多晶铜薄膜力学行为的数值模拟研究. 物理学报, 2004, 53(11): 3637-3643. doi: 10.7498/aps.53.3637
    [19] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
    [20] 计齐根, 都有为. 晶粒边界对Nd2Fe14B/α-Fe纳米复合材料性能的影响. 物理学报, 2000, 49(11): 2281-2286. doi: 10.7498/aps.49.2281
计量
  • 文章访问数:  6615
  • PDF下载量:  869
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-21
  • 修回日期:  2015-01-07
  • 刊出日期:  2015-06-05

/

返回文章
返回