搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土永磁体及复合磁体反磁化过程和矫顽力

李柱柏 李赟 秦渊 张雪峰 沈保根

引用本文:
Citation:

稀土永磁体及复合磁体反磁化过程和矫顽力

李柱柏, 李赟, 秦渊, 张雪峰, 沈保根

Magnetization reversal and coercivity in rare-earth permanent magnets and composite magnets

Li Zhu-Bai, Li Yun, Qin Yuan, Zhang Xue-Feng, Shen Bao-Gen
PDF
HTML
导出引用
  • 稀土永磁体即使内秉性质相同, 但矫顽力可能相差很大. 本文以Pr-Fe-B磁体为例, 从热激活反磁化即反磁化临界过程探讨决定矫顽力的关键因素. Pr-Fe-B晶粒表层缺陷区与晶粒内部耦合推动反磁化畴形核从而去钉扎, 晶粒表层缺陷区的各向异性对克服晶粒内部势垒具有贡献, 因此反磁化形核场和矫顽力大大降低. 由于晶粒表层缺陷区与晶粒内部耦合, 在反磁化临界过程磁畴壁尺寸稍大于理论尺寸. 具有软、硬磁相结构的Pr-Fe-B复合磁体, 软、硬磁相晶粒之间交换耦合作用也会增大反磁化畴壁尺寸. 软、硬磁交换耦合的能量对克服硬磁相晶粒内部各向异性势垒也会有贡献, 这将进一步降低磁体矫顽力. 添加Ti, Nb高熔点金属, 复合磁体矫顽力显著提高. 分析认为, 这不仅仅是磁体晶粒尺寸减小的缘故. 热激活尺寸减小说明磁畴壁中包含的硬磁相晶粒表层缺陷区尺寸减小, 硬磁相表面和两相界面各向异性对克服硬磁相晶粒内部势垒的贡献减小, 反磁化所需外磁场增大.
    The coercivities in rare earth permanent magnets even with the same intrinsic properties may differ largely. In this paper, what determines the coercivity is discussed via the investigation of thermal activation in Pr-Fe-B ribbons prepared by melt-spinning method. The thermal activation, resulting from thermal fluctuation overcoming the energy barrier under the applied field, is the critical behavior of magnetization reversal. The activation size is comparable to the theoretical domain wall size, implying that the magnetization reversal undergoes the nucleation of revered domain wall at grain outer-layer in Pr-Fe-B ribbons, and the defects near the grain boundary are critical for the magnetization reversal and coercivity. The exchange coupling between the defect region at grain outer-layer and the perfect region in the inside of grain promotes the nucleation of reversed domain and the depinning of domain wall motion. The reduced anisotropy of the defect region also contributes to the overcoming of energy barrier of magneto crystallie anisotropy in the inside of Pr-Fe-B grains by the coupling effect, so the nucleation field of reversed domain and coercivity decrease largely, and the domain wall size is a little larger than the theoretical value due to the coupling between the defect region at grain outer-layer and the perfect region in the inside of grain in the critical magnetization reversal. In Pr2Fe14B/α-Fe composite magnets, the exchange coupling between the soft and hard magnetic phase leads the domain wall size to increase in the critical magnetization reversal of thermal activation, and so the exchange energy plays a role in overcoming the energy barrier, resulting in the further decrease of coercivity. Via the addition of Ti and Nb element, the coercivity increases significantly. Based on the investigation of thermal activation, the size of defect region involved in the domain wall decreases, and the contribution of the anisotropy in the defect region and interface to the overcoming of energy barrier is weakened, so the applied magnetic field should be increased in the magnetization reversal. The coercivity can be enhanced by reducing the size of defect region at grain outer-layer and by making the anisotropy change abruptly at the interface between the hard and soft magnetic phase.
      通信作者: 李柱柏, lzbgj@163.com
    • 基金项目: 国家自然科学基金(批准号: 51861030, 51571126)和国家重点基础研究发展计划(批准号: 2016YFB0700900)资助的课题.
      Corresponding author: Li Zhu-Bai, lzbgj@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51861030, 51571126) and the State Key Development Program for Basic Research of China (Grant No. 2016YFB0700900).
    [1]

    Herbst J F 1991 Rev. Mod. Phys. 63 819Google Scholar

    [2]

    Kou X C, Kronmüller H, Givord D, Rossignol M F 1994 Phys. Rev. B 50 3849Google Scholar

    [3]

    Zhao G P, Zhao M G, Lim H S, Feng Y P, Ong C K 2005 Appl. Phys. Lett. 87 162513Google Scholar

    [4]

    Zhang H W, Rong C B, Zhang J, Zhang S Y, Shen B G 2002 Phys. Rev. B 66 184436Google Scholar

    [5]

    Kronmüller H 1987 Phys. Stat. Sol. B 144 385Google Scholar

    [6]

    Sepehri-Amin H, Ohkubo T, Shima T, Hono K 2012 Acta Mater. 60 819Google Scholar

    [7]

    Chen S L, Liu W, Zhang Z D 2005 Phys. Rev. B 72 224419Google Scholar

    [8]

    Yue M, Liu W Q, Zhang D T, Jian Z G, Cao A L, Zhang J X 2009 Appl. Phys. Lett. 94 092501Google Scholar

    [9]

    Givord D, Tenaud P, Viadieu T 1988 IEEE Trans. Magn. 24 1921Google Scholar

    [10]

    Gao R W, Zhang D H, Li H, Jiang S T, Zhou S Z, Li F B, Zhang L D 1995 J. Appl. Phys. 78 1156Google Scholar

    [11]

    Zhao G P, Wang X L, Yang C, Xie L H, Zhou G 2007 J. Appl. Phys. 101 09K102Google Scholar

    [12]

    Givord D, Rossignol M, Barthem V M T S 2003 J. Magn. Magn. Mater. 258-259 1

    [13]

    Li Z B, Shen B G, Niu E, Sun J R 2013 Appl. Phys. Lett. 103 062405Google Scholar

    [14]

    Kronmüller H, Durst K D, Sagawa M 1988 J. Magn. Magn. Mater. 74 291Google Scholar

    [15]

    Wohlfarth E P 1984 J. Phys. F: Met. Phys. 14 L155Google Scholar

    [16]

    张宏伟, 荣传兵, 张健, 张绍英, 沈保根 2003 物理学报 52 722Google Scholar

    Zhang H W, Rong C B, Zhang J, Zhang S Y, Shen B G 2003 Acta Phys. Sin. 52 722Google Scholar

    [17]

    Li Z B, Shen B G, Niu E, Liu R M, Zhang M, Sun J R 2013 Chin. Phys. B 22 117503Google Scholar

    [18]

    Li Z B, Zhang Y, Shen B G, Zhang M, Hu F X, Sun J R 2017 J. Magn. Magn. Mater. 422 249Google Scholar

    [19]

    Bauer J, Seeger M, Zern A, Kronmüller H 1996 J. Appl. Phys. 80 1667Google Scholar

    [20]

    Zhang H W, Rong C B, Du X B, Zhang S Y, Shen B G 2004 J. Magn. Magn. Mater. 278 127Google Scholar

    [21]

    Kronmüller H, Fahnle M 2003 Micromagnetism and the Microstructure of Ferromagnetic Solids (Cambridge: Cambridge University Press) p420

    [22]

    Zhang H W, Zhang S Y, Shen B G, Goll D, Kronmüller H 2001 Chin. Phys. 10 1169Google Scholar

    [23]

    Li Z B, Shen B G, Zhang M, Zhang Y, Hu F X, Sun J R 2015 Appl. Phys. Lett. 106 042403Google Scholar

    [24]

    张宏伟, 张文勇, 阎阿儒, 沈保根 1999 物理学报 48 211

    Zhang H W, Zhang W Y, Yan A R, Shen B G 1999 Acta Phys. Sin. 48 211

    [25]

    Li H L, Lou L, Hou F C, Guo D F, Li W, Li X H, Gunderov D V, Sato K, Zhang X Y 2013 Appl. Phys. Lett. 103 142406Google Scholar

    [26]

    Seeger M, Köhler D, Kronmüller H 1994 J. Magn. Magn. Mater. 130 165Google Scholar

    [27]

    Liu W, Liu X H, Cui W B, Gong W J, Zhang Z D 2013 Chin. Phys. B 22 027104Google Scholar

    [28]

    Zhang J, Takahashi Y K, Gopalan R, Hono K 2005 Appl. Phys. Lett. 86 122509Google Scholar

    [29]

    Si W J, Zhao G P, Ran N, Peng Y, Morvan F J, Wan X L 2015 Sci. Rep. 5 16212Google Scholar

    [30]

    Cui W B, Takahashi Y K, Hono K 2012 Adv. Mater. 24 6530Google Scholar

    [31]

    Kelly P E, O’Grady K, Mayo P I, Chantrell R W 1989 IEEE Trans. Magn. 25 3881Google Scholar

    [32]

    Choi Y, Jiang J S, Ding Y, Rosenberg R A, Pearson J E, Bader S D, Zambano A, Murakami M, Takeuchi I, Wang Z L, Liu J P 2007 Phys. Rev. B 75 104432Google Scholar

  • 图 1  样品粉末的X射线衍射谱

    Fig. 1.  The X-ray diffraction patterns of powders for the samples.

    图 2  样品在温度300 K的磁滞回线

    Fig. 2.  The hysterisis loops of the samples at temperature of 300 K.

    图 3  样品的${\mu _0}{H_{\rm{c}}}/{J_{\rm{s}}}$${\mu _0}H_{\rm{N}}^{{\rm{min}}}/{J_{\rm{s}}}$之间的关系

    Fig. 3.  The dependences of ${\mu _0}{H_{\rm{c}}}/{J_{\rm{s}}}$ on ${\mu _0}H_{\rm{N}}^{{\rm{min}}}/{J_{\rm{s}}}$ for all samples.

    图 4  温度300 K磁场保持1200 s样品的热激活后的磁行为, 插图为热激活不可逆过程的激活尺寸和理论磁畴壁尺寸

    Fig. 4.  The magnetization behaviors of thermal activation for 1200 s of waiting time at temperature of 300 K, and the inset shows the activation size of thermal activation and the ideal domain wall size.

    图 5  样品在温度300 K的${\text{δ}} m$曲线(Henkel点)

    Fig. 5.  ${\text{δ}} m$ curves (Henkel plots) for the samples at temperature of 300 K.

  • [1]

    Herbst J F 1991 Rev. Mod. Phys. 63 819Google Scholar

    [2]

    Kou X C, Kronmüller H, Givord D, Rossignol M F 1994 Phys. Rev. B 50 3849Google Scholar

    [3]

    Zhao G P, Zhao M G, Lim H S, Feng Y P, Ong C K 2005 Appl. Phys. Lett. 87 162513Google Scholar

    [4]

    Zhang H W, Rong C B, Zhang J, Zhang S Y, Shen B G 2002 Phys. Rev. B 66 184436Google Scholar

    [5]

    Kronmüller H 1987 Phys. Stat. Sol. B 144 385Google Scholar

    [6]

    Sepehri-Amin H, Ohkubo T, Shima T, Hono K 2012 Acta Mater. 60 819Google Scholar

    [7]

    Chen S L, Liu W, Zhang Z D 2005 Phys. Rev. B 72 224419Google Scholar

    [8]

    Yue M, Liu W Q, Zhang D T, Jian Z G, Cao A L, Zhang J X 2009 Appl. Phys. Lett. 94 092501Google Scholar

    [9]

    Givord D, Tenaud P, Viadieu T 1988 IEEE Trans. Magn. 24 1921Google Scholar

    [10]

    Gao R W, Zhang D H, Li H, Jiang S T, Zhou S Z, Li F B, Zhang L D 1995 J. Appl. Phys. 78 1156Google Scholar

    [11]

    Zhao G P, Wang X L, Yang C, Xie L H, Zhou G 2007 J. Appl. Phys. 101 09K102Google Scholar

    [12]

    Givord D, Rossignol M, Barthem V M T S 2003 J. Magn. Magn. Mater. 258-259 1

    [13]

    Li Z B, Shen B G, Niu E, Sun J R 2013 Appl. Phys. Lett. 103 062405Google Scholar

    [14]

    Kronmüller H, Durst K D, Sagawa M 1988 J. Magn. Magn. Mater. 74 291Google Scholar

    [15]

    Wohlfarth E P 1984 J. Phys. F: Met. Phys. 14 L155Google Scholar

    [16]

    张宏伟, 荣传兵, 张健, 张绍英, 沈保根 2003 物理学报 52 722Google Scholar

    Zhang H W, Rong C B, Zhang J, Zhang S Y, Shen B G 2003 Acta Phys. Sin. 52 722Google Scholar

    [17]

    Li Z B, Shen B G, Niu E, Liu R M, Zhang M, Sun J R 2013 Chin. Phys. B 22 117503Google Scholar

    [18]

    Li Z B, Zhang Y, Shen B G, Zhang M, Hu F X, Sun J R 2017 J. Magn. Magn. Mater. 422 249Google Scholar

    [19]

    Bauer J, Seeger M, Zern A, Kronmüller H 1996 J. Appl. Phys. 80 1667Google Scholar

    [20]

    Zhang H W, Rong C B, Du X B, Zhang S Y, Shen B G 2004 J. Magn. Magn. Mater. 278 127Google Scholar

    [21]

    Kronmüller H, Fahnle M 2003 Micromagnetism and the Microstructure of Ferromagnetic Solids (Cambridge: Cambridge University Press) p420

    [22]

    Zhang H W, Zhang S Y, Shen B G, Goll D, Kronmüller H 2001 Chin. Phys. 10 1169Google Scholar

    [23]

    Li Z B, Shen B G, Zhang M, Zhang Y, Hu F X, Sun J R 2015 Appl. Phys. Lett. 106 042403Google Scholar

    [24]

    张宏伟, 张文勇, 阎阿儒, 沈保根 1999 物理学报 48 211

    Zhang H W, Zhang W Y, Yan A R, Shen B G 1999 Acta Phys. Sin. 48 211

    [25]

    Li H L, Lou L, Hou F C, Guo D F, Li W, Li X H, Gunderov D V, Sato K, Zhang X Y 2013 Appl. Phys. Lett. 103 142406Google Scholar

    [26]

    Seeger M, Köhler D, Kronmüller H 1994 J. Magn. Magn. Mater. 130 165Google Scholar

    [27]

    Liu W, Liu X H, Cui W B, Gong W J, Zhang Z D 2013 Chin. Phys. B 22 027104Google Scholar

    [28]

    Zhang J, Takahashi Y K, Gopalan R, Hono K 2005 Appl. Phys. Lett. 86 122509Google Scholar

    [29]

    Si W J, Zhao G P, Ran N, Peng Y, Morvan F J, Wan X L 2015 Sci. Rep. 5 16212Google Scholar

    [30]

    Cui W B, Takahashi Y K, Hono K 2012 Adv. Mater. 24 6530Google Scholar

    [31]

    Kelly P E, O’Grady K, Mayo P I, Chantrell R W 1989 IEEE Trans. Magn. 25 3881Google Scholar

    [32]

    Choi Y, Jiang J S, Ding Y, Rosenberg R A, Pearson J E, Bader S D, Zambano A, Murakami M, Takeuchi I, Wang Z L, Liu J P 2007 Phys. Rev. B 75 104432Google Scholar

  • [1] 邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森. Ti掺杂Nd2Fe14B/α-Fe纳米双相复合永磁体晶化动力学. 物理学报, 2023, 72(2): 027501. doi: 10.7498/aps.72.20221479
    [2] 何安, 薛存. 缺陷调控临界温度梯度超导膜的磁通整流反转效应. 物理学报, 2022, 71(2): 027401. doi: 10.7498/aps.71.20211157
    [3] 张硕, 龙连春, 刘静毅, 杨洋. 缺陷对铁单质薄膜磁致伸缩与磁矩演化的影响. 物理学报, 2022, 71(1): 017502. doi: 10.7498/aps.71.20211177
    [4] 缪培贤, 王涛, 史彦超, 高存绪, 蔡志伟, 柴国志, 陈大勇, 王建波. 在开磁路中利用抽运-检测型铷原子磁力仪测量软磁材料的矫顽力. 物理学报, 2022, 71(24): 244206. doi: 10.7498/aps.71.20221618
    [5] 张硕, 龙连春, 刘静毅, 杨洋. 分子动力学方法研究缺陷对铁单质薄膜磁致伸缩的影响. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211177
    [6] 李子亮, 师振莲, 王鹏军. 采用永磁铁的钠原子二维磁光阱的设计和研究. 物理学报, 2020, 69(12): 126701. doi: 10.7498/aps.69.20200266
    [7] 施伟, 周强, 刘斌. 基于旋转永磁体的超低频机械天线电磁特性分析. 物理学报, 2019, 68(18): 188401. doi: 10.7498/aps.68.20190339
    [8] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控. 物理学报, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [9] 朱金荣, 范吕超, 苏垣昌, 胡经国. 温度、缺陷对磁畴壁动力学行为的影响. 物理学报, 2016, 65(23): 237501. doi: 10.7498/aps.65.237501
    [10] 何永周. 永磁体外部磁场的不均匀性研究. 物理学报, 2013, 62(8): 084105. doi: 10.7498/aps.62.084105
    [11] 郭子政, 胡旭波. 应力对铁磁薄膜磁滞损耗和矫顽力的影响. 物理学报, 2013, 62(5): 057501. doi: 10.7498/aps.62.057501
    [12] 马俊, 杨万民, 王妙, 陈森林, 冯忠岭. 辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响. 物理学报, 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [13] 马俊, 杨万民, 李佳伟, 王妙, 陈森林. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响. 物理学报, 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [14] 马俊, 杨万民, 李国政, 程晓芳, 郭晓丹. 永磁体辅助下单畴GdBCO超导体和永磁体之间的磁悬浮力研究. 物理学报, 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [15] 张凯旺, 钟建新. 缺陷对单壁碳纳米管熔化与预熔化的影响. 物理学报, 2008, 57(6): 3679-3683. doi: 10.7498/aps.57.3679
    [16] 陈宪锋. R2Fe14B型永磁材料中第二磁晶各向异性常数对反磁化过程的影响. 物理学报, 2005, 54(8): 3856-3861. doi: 10.7498/aps.54.3856
    [17] 张晓渝, 陈亚杰. 磁性颗粒复合体磁渗流区矫顽力异常的研究. 物理学报, 2003, 52(8): 2052-2056. doi: 10.7498/aps.52.2052
    [18] 高汝伟, 冯维存, 王 标, 陈 伟, 韩广兵, 张 鹏, 刘汉强, 李 卫, 郭永权, 李岫梅. 纳米复合永磁材料的有效各向异性与矫顽力. 物理学报, 2003, 52(3): 703-707. doi: 10.7498/aps.52.703
    [19] 荣传兵, 张宏伟, 张 健, 张绍英, 沈保根. 纳米晶永磁中面缺陷对畴壁钉扎机理的研究. 物理学报, 2003, 52(3): 708-712. doi: 10.7498/aps.52.708
    [20] 李鹏飞, 颜晓红, 王如志. 缺陷对准周期磁超晶格输运性质的影响. 物理学报, 2002, 51(9): 2139-2143. doi: 10.7498/aps.51.2139
计量
  • 文章访问数:  8288
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-14
  • 修回日期:  2019-06-07
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回