搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共轭聚合物内非均匀场驱动的超快激子输运的动力学研究

王文静 李冲 张毛毛 高琨

引用本文:
Citation:

共轭聚合物内非均匀场驱动的超快激子输运的动力学研究

王文静, 李冲, 张毛毛, 高琨

Dynamical study of ultrafast exciton migration in coujugated polymers driven by nonuniform field

Wang Wen-Jing, Li Chong, Zhang Mao-Mao, Gao Kun
PDF
HTML
导出引用
  • 基于激子输运在聚合物给体/富勒烯(或非富勒烯)受体异质结太阳能电池光伏过程中的重要作用, 本文结合最新的实验进展, 从理论上提出了由非均匀场驱动的超快激子输运机制. 动力学模拟采用扩展的一维Su-Schrieffer-Heeger紧束缚模型结合非绝热的量子动力学方法, 而非均匀场主要考虑了由受限电荷诱导的非均匀电场和分子排列相关的非均匀构型场. 研究发现: 非均匀电场和构型场均可驱动激子实现超快输运, 其输运速度比由传统的Förster或Dexter机制主导的激子输运可分别提高1和2个数量级. 另外, 本文重点分析了这两种非均匀场对激子输运的驱动机制, 定量计算了它们各自诱导的驱动力. 最后, 针对影响这两种非均匀场分布的因素(包括受限电荷相对聚合物分子的距离和聚合物分子线性排列的斜率), 讨论了它们对激子输运动力学的影响.
    Due to the exciton migration dynamics playing an important role in the photovoltaic process of organic solar cells, which are usually composed of polymer donor and fullerene (or non-fullerene) acceptor, in this paper we propose a new strategy to achieve the ultrafast exciton migration in polymers. Here, the effects of some nonuniform fields on the exciton migration dynamics in polymers are emphasized, such as the nonuniform electric field and the nonuniform polymer packing configuration field. Both of the two kinds of nonuniform fields can be intrinsically existent or modulated in an actual photovoltaic system. In this work, the nonuniform electric field and the nonuniform configuration field are assumed to be separately created by a confined charge and a linear polymer packing, therefore, their model Hamiltonian is established. In dynamical simulations of the exciton migration dynamics in polymers, an extended version of one-dimensional Su-Schrieffer-Heeger tight-binding model combined with a nonadiabatic evolution method is employed. It is found that the nonuniform electric field and the nonuniform configuration field both can drive exciton to an ultrafast migration process. Compared with the exciton migration speed dominated by the traditional Förster or Dexter mechanism, the exciton migration speed dominated by the nonuniform electric field and that by the nonuniform configuration field can be increased by one and two orders of magnitude, respectively. In addition, the driving mechanisms of the two kinds of nonuniform fields for the exciton migration dynamics are separately clarified, where the corresponding driving forces are also quantitatively calculated. Finally, in view of the factors affecting the distributions of the two kinds of nonuniform fields (such as the distance d between confined charge and polymer, and the linear packing slope k between polymers), we discuss their effects on the exciton migration dynamics. It is found that the exciton migration in polymer can be apparently accelerated by shortening the distance d between confined charge and polymer, and there exists a critical value of d, beyond which the exciton will be dissociated into free charges in its migration process. For the linear packing slope k between polymers, we find that there exists an optimal value, at which the exciton has the highest migration speed in polymers.
      通信作者: 王文静, wwj8686@163.com ; 高琨, gk@sdu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 11674195) 资助的课题.
      Corresponding author: Wang Wen-Jing, wwj8686@163.com ; Gao Kun, gk@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11674195).
    [1]

    Ameri T, Khoram P, Min J, Brabec C J 2013 Adv. Mater. 25 4245Google Scholar

    [2]

    An Q S, Zhang F J, Zhang J, Tang W H, Deng Z B, Hu B 2016 Energy Environ. Sci. 9 281Google Scholar

    [3]

    於黄忠 2013 物理学报 62 027201Google Scholar

    Yu H Z 2013 Acta Phys. Sin. 62 027201Google Scholar

    [4]

    Yuan J, Zhang Y Q, Zhou L Y, Zhang G C, Yip H L, Lau T K, Lu X H, Zhu C, Peng H J, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y F, Zou Y P 2019 Joule 3 1Google Scholar

    [5]

    Meng L X, Zhang Y M, Wan X J, Li C X, Zhang X, Wang Y B, Ke X, Xiao Z, Ding L M, Xia R X, Yip H L, Cao Y, Chen Y S 2018 Science 361 1094Google Scholar

    [6]

    Janssen R A J, Nelson J 2013 Adv. Mater. 25 1847Google Scholar

    [7]

    Cheng P, Zhan X W 2016 Chem. Soc. Rev. 45 2544Google Scholar

    [8]

    Bjorgaard J A, Köse M E 2015 RSC Adv. 5 8432Google Scholar

    [9]

    Scholes G D, Rumbles G 2006 Nat. Mater. 5 683Google Scholar

    [10]

    王文静, 孟瑞璇, 李元, 高琨 2014 物理学报 63 197901Google Scholar

    Wang W J, Meng R X, Li Y, Gao K 2014 Acta Phys. Sin. 63 197901Google Scholar

    [11]

    Ruini A, Caldas M J, Bussi G, Molinari E 2002 Phys. Rev. Lett. 88 206403Google Scholar

    [12]

    Gao K, Liu X J, Liu D S, Xie S J 2008 Phys. Lett. A 372 2490Google Scholar

    [13]

    Kaake L G, Moses D, Heeger A J 2015 Phys. Rev. B 91 075436Google Scholar

    [14]

    Heeger A J 2014 Adv. Mater. 26 10Google Scholar

    [15]

    Dimitrov S, Schroeder B, Nielsen C, Bronstein H, Fei Z, McCulloch I, Heeney M, Durrant J 2016 Polymers 8 14Google Scholar

    [16]

    Förster T 1948 Ann. Phys. 2 55

    [17]

    Dexter D L 1953 J. Chem. Phys. 21 836Google Scholar

    [18]

    Menke S M, Holmes R J 2014 Energy Environ. Sci. 7 499Google Scholar

    [19]

    Mikhnenko O V, Blom P W M, Nguyen T Q 2015 Energy Environ. Sci. 8 1867Google Scholar

    [20]

    Scarongella M, de Jonghe-Risse J, Buchaca-Domingo E, Causa M, Fei Z, Heeney M, Moser J E, Stingelin N, Banerji N 2015 J. Am. Chem. Soc. 137 2908Google Scholar

    [21]

    Kaake L G, Jasieniak J J, Bakus R C, Welch G C, Moses D, Bazan G C, Heeger A J 2012 J. Am. Chem. Soc. 134 19828Google Scholar

    [22]

    Kaake L G, Moses D, Heeger A J 2013 J. Phys. Chem. Lett. 4 2264Google Scholar

    [23]

    Kaake L G, Zhong C, Love J A, Nagao I, Bazan G C, Nguyen T Q, Huang F, Cao Y, Moses D, Heeger A J 2014 J. Phys. Chem. Lett. 5 2000Google Scholar

    [24]

    Smith S L, Chin A W 2015 Phys. Rev. B 91 201302Google Scholar

    [25]

    Najafov H, Lee B, Zhou Q, Feldman L C, Podzorov V 2010 Nat. Mater. 9 938Google Scholar

    [26]

    Jin X U, Price M B, Finnegan J R, Boott C E, Richter J M, Rao A, Menke S M, Friend R H, Whittell G R, Manners I 2018 Science 360 897Google Scholar

    [27]

    Su W P, Schrieffer J, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [28]

    Heeger A J, Kivelson S, Schrieffer J, Su W P 1988 Rev. Mod. Phys. 60 781Google Scholar

    [29]

    Hu D, Yu J, Wong K, Bagchi B, Rossky P J, Barbara P E 2000 Nature 405 1030Google Scholar

    [30]

    Yao H, Qian D, Zhang H, Qin Y, Xu B, Cui Y, Yu R, Gao F, Hou J H 2018 Chin. J. Chem 36 491Google Scholar

    [31]

    Yuan Y, Reece T J, Sharma P, Poddar S, Ducharme S, Gruverman A, Yang Y, Huang J S 2011 Nat. Mater. 10 296Google Scholar

    [32]

    Karak S, Page Z A, Tinkham J S, Lahti P M, Emrick T, Duzhko V V 2015 Appl. Phys. Lett. 106 103303Google Scholar

    [33]

    Meng R X, Li Y, Gao K, Qin W, Wang L X 2017 J. Phys. Chem. C 121 20546Google Scholar

    [34]

    赵二海, 孙鑫, 陈科, 付柔励 2000 物理学报 49 1778Google Scholar

    Zhao E H, Sun X, Chen K, Fu R L 2000 Acta Phys. Sin. 49 1778Google Scholar

    [35]

    Sun X, Fu R L, Yonemitsu K, Nasu K 2000 Phys. Rev. Lett. 84 2830Google Scholar

    [36]

    McMahon D P, Cheung D L, Troisi A 2011 J. Phys. Chem. Lett. 2 2737Google Scholar

    [37]

    McEniry E J, Wang Y, Dundas D, Todorov T N, Stella L, Miranda R P, Fisher A J, Horsfield A P, Race C P, Mason D R, Foulkes W M C, Sutton A P 2010 Eur. Phys. J. B 77 305Google Scholar

  • 图 1  受限正电荷 (电荷量为$\left| e \right|$)相对于聚合物链的位置, d为电荷与链右端点的距离; 曲线为d = 3 nm时电场强度沿分子链的分布, 负号表示电场的方向与分子链的正方向相反

    Fig. 1.  Schematic diagram about the position of a confined charge (q = $\left| e \right|$) relative to the polymer chain, d shows the distance between the charge and the right chain-end; the curve describes the distribution of the induced electric field E along the polymer chain with the case of d = 3 nm, where the minus sign means that the direction of the electric field is opposite to that of the chain.

    图 2  激子在非均匀电场(d = 3 nm)驱动下沿聚合物链超快输运对应的晶格动力学演化, 其初始产生时的中心位置为nc = 30

    Fig. 2.  Time evolution about the lattice configuration of an exciton in a polymer chain driven by a nonuniform electric field with d = 3 nm, where the exciton is initially generated at a central position of nc = 30.

    图 3  非均匀电场诱导激子输运的驱动力F随时间的变化; 插图为t = 1000 fs时激子内极化的正电荷与负电荷的分布

    Fig. 3.  Variation of the driving force F as a function of the time. The inset presents the polarized positive charges and negative charges in the exciton at the time t = 1000 fs.

    图 4  不同非均匀电场(通过改变d调控)驱动下激子中心位置nc随时间的演化

    Fig. 4.  Time evolution of the exciton center nc along the polymer chain driven by different nonuniform electric fields, which can be modulated by changing the value of d.

    图 5  线性排列构型的耦合双分子链, dn为分子链垂直最近邻格点间的距离

    Fig. 5.  Schematic diagram of two coupled polymer chains with a linear interchain packing configuration, where dn indicates the distance between the vertical-neighbor sites.

    图 6  激子在线性链间构型场 (k = 0.03)驱动下在分子间扩展及沿分子链输运的晶格动力学演化, 激子初始产生在第1条分子链上, 中心位置为nc = 30

    Fig. 6.  Time evolution about the lattice configuration of an exciton in two coupled polymer chains driven by the nonuniform configuration field with a linear coefficient k = 0.03.

    图 7  线性构型场(k = 0.03)诱导的激子驱动力F沿分子链的分布, 插图为激子产生能$\Delta E$随链间距离dn的变化

    Fig. 7.  Distribution of the driving force F along polymer chains driven by a linear configuration with k = 0.03. The inset presents the dependence of the exciton creation energy $\Delta E$ upon the interchain distance dn.

    图 8  不同线性分子排列构型场(通过改变k调控)下激子中心位置nc随时间的演化

    Fig. 8.  Time evolution of the exciton center nc along polymer chains driven by different configuration fields, which can be modulated by changing the value of k.

  • [1]

    Ameri T, Khoram P, Min J, Brabec C J 2013 Adv. Mater. 25 4245Google Scholar

    [2]

    An Q S, Zhang F J, Zhang J, Tang W H, Deng Z B, Hu B 2016 Energy Environ. Sci. 9 281Google Scholar

    [3]

    於黄忠 2013 物理学报 62 027201Google Scholar

    Yu H Z 2013 Acta Phys. Sin. 62 027201Google Scholar

    [4]

    Yuan J, Zhang Y Q, Zhou L Y, Zhang G C, Yip H L, Lau T K, Lu X H, Zhu C, Peng H J, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y F, Zou Y P 2019 Joule 3 1Google Scholar

    [5]

    Meng L X, Zhang Y M, Wan X J, Li C X, Zhang X, Wang Y B, Ke X, Xiao Z, Ding L M, Xia R X, Yip H L, Cao Y, Chen Y S 2018 Science 361 1094Google Scholar

    [6]

    Janssen R A J, Nelson J 2013 Adv. Mater. 25 1847Google Scholar

    [7]

    Cheng P, Zhan X W 2016 Chem. Soc. Rev. 45 2544Google Scholar

    [8]

    Bjorgaard J A, Köse M E 2015 RSC Adv. 5 8432Google Scholar

    [9]

    Scholes G D, Rumbles G 2006 Nat. Mater. 5 683Google Scholar

    [10]

    王文静, 孟瑞璇, 李元, 高琨 2014 物理学报 63 197901Google Scholar

    Wang W J, Meng R X, Li Y, Gao K 2014 Acta Phys. Sin. 63 197901Google Scholar

    [11]

    Ruini A, Caldas M J, Bussi G, Molinari E 2002 Phys. Rev. Lett. 88 206403Google Scholar

    [12]

    Gao K, Liu X J, Liu D S, Xie S J 2008 Phys. Lett. A 372 2490Google Scholar

    [13]

    Kaake L G, Moses D, Heeger A J 2015 Phys. Rev. B 91 075436Google Scholar

    [14]

    Heeger A J 2014 Adv. Mater. 26 10Google Scholar

    [15]

    Dimitrov S, Schroeder B, Nielsen C, Bronstein H, Fei Z, McCulloch I, Heeney M, Durrant J 2016 Polymers 8 14Google Scholar

    [16]

    Förster T 1948 Ann. Phys. 2 55

    [17]

    Dexter D L 1953 J. Chem. Phys. 21 836Google Scholar

    [18]

    Menke S M, Holmes R J 2014 Energy Environ. Sci. 7 499Google Scholar

    [19]

    Mikhnenko O V, Blom P W M, Nguyen T Q 2015 Energy Environ. Sci. 8 1867Google Scholar

    [20]

    Scarongella M, de Jonghe-Risse J, Buchaca-Domingo E, Causa M, Fei Z, Heeney M, Moser J E, Stingelin N, Banerji N 2015 J. Am. Chem. Soc. 137 2908Google Scholar

    [21]

    Kaake L G, Jasieniak J J, Bakus R C, Welch G C, Moses D, Bazan G C, Heeger A J 2012 J. Am. Chem. Soc. 134 19828Google Scholar

    [22]

    Kaake L G, Moses D, Heeger A J 2013 J. Phys. Chem. Lett. 4 2264Google Scholar

    [23]

    Kaake L G, Zhong C, Love J A, Nagao I, Bazan G C, Nguyen T Q, Huang F, Cao Y, Moses D, Heeger A J 2014 J. Phys. Chem. Lett. 5 2000Google Scholar

    [24]

    Smith S L, Chin A W 2015 Phys. Rev. B 91 201302Google Scholar

    [25]

    Najafov H, Lee B, Zhou Q, Feldman L C, Podzorov V 2010 Nat. Mater. 9 938Google Scholar

    [26]

    Jin X U, Price M B, Finnegan J R, Boott C E, Richter J M, Rao A, Menke S M, Friend R H, Whittell G R, Manners I 2018 Science 360 897Google Scholar

    [27]

    Su W P, Schrieffer J, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [28]

    Heeger A J, Kivelson S, Schrieffer J, Su W P 1988 Rev. Mod. Phys. 60 781Google Scholar

    [29]

    Hu D, Yu J, Wong K, Bagchi B, Rossky P J, Barbara P E 2000 Nature 405 1030Google Scholar

    [30]

    Yao H, Qian D, Zhang H, Qin Y, Xu B, Cui Y, Yu R, Gao F, Hou J H 2018 Chin. J. Chem 36 491Google Scholar

    [31]

    Yuan Y, Reece T J, Sharma P, Poddar S, Ducharme S, Gruverman A, Yang Y, Huang J S 2011 Nat. Mater. 10 296Google Scholar

    [32]

    Karak S, Page Z A, Tinkham J S, Lahti P M, Emrick T, Duzhko V V 2015 Appl. Phys. Lett. 106 103303Google Scholar

    [33]

    Meng R X, Li Y, Gao K, Qin W, Wang L X 2017 J. Phys. Chem. C 121 20546Google Scholar

    [34]

    赵二海, 孙鑫, 陈科, 付柔励 2000 物理学报 49 1778Google Scholar

    Zhao E H, Sun X, Chen K, Fu R L 2000 Acta Phys. Sin. 49 1778Google Scholar

    [35]

    Sun X, Fu R L, Yonemitsu K, Nasu K 2000 Phys. Rev. Lett. 84 2830Google Scholar

    [36]

    McMahon D P, Cheung D L, Troisi A 2011 J. Phys. Chem. Lett. 2 2737Google Scholar

    [37]

    McEniry E J, Wang Y, Dundas D, Todorov T N, Stella L, Miranda R P, Fisher A J, Horsfield A P, Race C P, Mason D R, Foulkes W M C, Sutton A P 2010 Eur. Phys. J. B 77 305Google Scholar

  • [1] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [2] 蔡田怡, 雎胜. 铁电体的光伏效应. 物理学报, 2018, 67(15): 157801. doi: 10.7498/aps.67.20180979
    [3] 严大东, 张兴华. 聚合物结晶理论进展. 物理学报, 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [4] 封国宝, 王芳, 曹猛. 电子辐照聚合物带电特性多参数共同作用的数值模拟. 物理学报, 2015, 64(22): 227901. doi: 10.7498/aps.64.227901
    [5] 袁晓娟, 袁慧敏, 张成强, 王文静, 于元勋, 刘德胜. 共轭聚合物中均匀无序对极化子输运动力学的影响. 物理学报, 2015, 64(6): 067201. doi: 10.7498/aps.64.067201
    [6] 廖瑞金, 周天春, George Chen, 杨丽君. 聚合物材料空间电荷陷阱模型及参数. 物理学报, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [7] 张歆, 章晓中, 谭新玉, 于奕, 万蔡华. Al2O3增强的Co2-C98/Al2O3/Si异质结的光伏效应. 物理学报, 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [8] 黄永宪, 冷劲松, 田修波, 吕世雄, 李垚. 等离子体浸没离子注入非导电聚合物的适应性及栅网诱导效应的研究. 物理学报, 2012, 61(15): 155206. doi: 10.7498/aps.61.155206
    [9] 高博文, 高潮, 阙文修, 韦玮. 新型高效聚合物/富勒烯有机光伏电池研究进展. 物理学报, 2012, 61(19): 194213. doi: 10.7498/aps.61.194213
    [10] 黄永宪, 吕世雄, 田修波, 杨士勤, Fu Ricky, Chu K Paul, 冷劲松, 李垚. 聚合物物理属性对离子注入效应的影响. 物理学报, 2012, 61(10): 105203. doi: 10.7498/aps.61.105203
    [11] 吴利华, 章晓中, 于奕, 万蔡华, 谭新玉. a-C: Fe/AlOx/Si基异质结的光伏效应. 物理学报, 2011, 60(3): 037807. doi: 10.7498/aps.60.037807
    [12] 周可余, 叶辉, 甄红宇, 尹伊, 沈伟东. 基于压电聚合物薄膜可调谐Fabry-Perot滤波器的研究. 物理学报, 2010, 59(1): 365-369. doi: 10.7498/aps.59.365
    [13] 全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟. 电子辐照下聚合物介质深层充电现象研究. 物理学报, 2009, 58(2): 1205-1211. doi: 10.7498/aps.58.1205
    [14] 张红平, 欧阳洁, 阮春蕾. 纤维悬浮聚合物熔体描述的均一结构多尺度模型. 物理学报, 2009, 58(1): 619-630. doi: 10.7498/aps.58.619
    [15] 史晶, 高琨, 雷杰, 解士杰. 基态非简并导电聚合物——坐标空间研究. 物理学报, 2009, 58(1): 459-464. doi: 10.7498/aps.58.459
    [16] 张亚妮. 微结构聚合物光纤中高双折射可调效应研究. 物理学报, 2008, 57(9): 5729-5734. doi: 10.7498/aps.57.5729
    [17] 王义平, 陈建平, 李新碗, 周俊鹤, 沈 浩, 施长海, 张晓红, 洪建勋, 叶爱伦. 快速可调谐电光聚合物波导光栅. 物理学报, 2005, 54(10): 4782-4788. doi: 10.7498/aps.54.4782
    [18] 曹万强, 李景德. 聚合物介电弛豫的温度特性. 物理学报, 2002, 51(7): 1634-1638. doi: 10.7498/aps.51.1634
    [19] 张锡娟, 李广起, 孙鑫. 聚合物中产生双激子的新通道. 物理学报, 2002, 51(1): 134-137. doi: 10.7498/aps.51.134
    [20] 侯春风, 阿不都热苏力, 杜春光, 孙秀冬, 李师群. 光折变有机聚合物中的空间孤子. 物理学报, 2001, 50(11): 2159-2165. doi: 10.7498/aps.50.2159
计量
  • 文章访问数:  7851
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-27
  • 修回日期:  2019-06-15
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回